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CHAPTER 1 
 

 
INTRODUCTION 

 
1.1 MICRO ELECTRO MECHANICAL SYSTEMS (MEMS) 
 
Miniaturization pervades present-day technology like once ether was thought to pervade 
all substances. Because of the ‘general desire’ for ever increasing functionality of 
compact pieces of technology, components have gradually been scaled down by factors 
of 1000 or much more, compared to equivalent components from the younger days of our 
grandparents. Machinery of fabulous accuracy and precision enables the fabrication of 
complete devices, in which relevant length scales recede far below the observation 
threshold of the human eye. Current processor industry involves transistors measuring a 
mere 45 nanometer, which means that a thousand or more are required to span the 
diameter of a human hair. 
The history of miniaturization of moving parts can be followed along centuries of 
developing craftsmanship in the field of mechanical clocks, see Figs. 1.1A-F. In a time 
span of 1000 years, mechanical parts have been downsized by a factor of 1000. Let us 
briefly review a few highlights, starting with the water clock, or clepsydra (“stealer of 
water”), built by Su Song in 1088 [1,2], see Fig. 1A. The complete construction measures 
40 feet (12 meters). The cited manuscript from 1092 A.D. is the earliest known mention 
of an endless chain transmission, which was part of the mechanics that converted the 
movement of falling water into indicating and striking time. In Europe, the oldest 
mentions of mechanical clocks are from the beginning of the 14th century. Because these 
clocks were driven by slowly falling weights, the earliest specimens were feasible in 
church towers only. The Salisbury Cathedral in England has the oldest known still 
working clock, from 1386 [3], see Fig. 1.1B. The mechanical part measures just over a 
cubic meter. Fig. 1.1C shows Christiaan Huygen’s design of a pendulum clock [4]. He 
was the first to realize a working device in 1656. This achieved unprecedented accuracy 
within home-suitable size. Meanwhile, the technique with a wound spring had already 
taken a flight. It is claimed that the oldest surviving clock driven by a wound spring had 
been given to Herzog Philipps des Guten von Burgund around 1430. It can be seen in the 
Germanisches Nationalmuseum in Nuremberg, Germany [5]. The wound spring enabled 
drastic miniaturization. Peter Henlein fabricated a portable ‘Taschenuhr’ in the early 16th 
century. Classic pocket watches appear in the 17th century. Fig. 1.1D shows the famous 
“Marie Antoinette” by Breguet [6], inventor of the tourbillion. The Marie-Antoinette is 
perhaps the most expensive watch ever made. This masterpiece took 44 years to complete 
and consists of more than 800 hand-made pieces, contained in an 18K golden case.  
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Fig. 1.1A. Chinese water clock by Su Song 
Fig. 1.1B. The Salisbury Cathedral clock 
Fig. 1.1C. Christiaan Huygens’s design of a pendulum clock 
 

 
Fig. 1.1D. Breguet’s “Marie-Antoinette” pocket watch (1827) 
Fig. 1.1E. Smallest wristwatch ever, Calibre 101 by Jaeger – LeCoultre (1929).  
Fig. 1.1F. MEMS transmission chain 
 
In the early 19th century, progressed miniaturization shrunk mechanical clocks to sizes 
such that they could be worn around the wrist. Those wristwatches became popular only 
after circa 1900. The smallest mechanical wristwatch ever is the Calibre 101 by Jaeger – 
LeCoultre (1929) [7], which measures a mere 14 × 4.8 × 3.4 mm3, weighing 0.9 gram. 
On submillimeter scale, mechanical transmission becomes increasingly challenging. 
Shown are miniaturized silicon gears driven by a chain transmission [8], basically a 
miniature version of what Su Song used for his water clock. The diameter of largest gear 
is about 400 µm. It will only be matter of time until we have to read the time through a 
microscope. 
The omnipresence of electronics has not forgotten to imprint its finger on the area of 
downscaled mechanical worlds. The merging of both miniaturized worlds resulted in a 
worldwide and rich flora of Micro Electro Mechanical Systems (MEMS), suitable for 
having assigned numerous applications.  
From a purely scientific point of view, MEMS are interesting because it unites many 
topics of physics: Mechanics, electrostatics, fluid dynamics, optics and so on. Increased 
downscaling justified coining the category of NEMS, where ‘N’ associates the currently 
much coveted term ‘nano’ with the field of microscopic (or perhaps ‘nanoscopic’) 
machinery. This downscaling itself gives rise to issues peculiar for MEMS.  
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Fig. 1.2  IBM microcantilever used for Magnetic Resonance Force Microscopy (MRFM) 
 
Quantities associated with the cubic dimension, like mass, change much more rapidly 
than quantities associated with surface and length. Cantilevers stretched out at long 
aspect ratios show no significant weight-induced deflection, whereas a model upscaled 
towards everyday life would not sustain the extra weight without further measures. The 
cantilever shown in Fig. 1.2 [9] has a length of 120 µm and a thickness of 100 nm. 
Accounts of what consequences downscaling has for various physical interactions and 
quantities are given in [10] and [11]. 
MEMS can be classified along various criteria. One is whether it concerns an actuating 
device (such as a micro pump) or a sensing device. Sensors equipped with a feed-back 
mechanism could be said to combine both. A second criterion concerns the physical 
principle that characterizes the device: for an actuating device this is the driving 
mechanism and for a sensor this is the read-out mechanism.  
Within the world of miniaturized devices (microsystems), MEMS form a very 
pronounced and pluriform world. Fig. 1.3 could be a coarse map of the world of 
Microsystems plus the topology of some of its subsets, amongst others MEMS. 
Categorization of microdevices along this latter criterion is somewhat arbitrary, because 
many devices encompass various physical principles. A couple of them are summed 
below. 

 
 

Fig. 1.3 Schematic of Microsystems, and MEMS with several sub-categories. 
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Piezo-electricity 
 
If certain crystals are put under pressure (the Greek πιέζω means “to press, to squeeze”), 
they generate charge on the surface, proportional to the pressure. A literally household 
application of this piezo-electric effect is a lighter, as an alternative for flint stone. A 
small hammer strikes the crystal, which causes it to produce a spark. Lead zirconate 
titanate (PbZrTiO3 or  “PZT”) is a common piezo(electric) crystal, but also ordinary 
quartz. The charge separation leads to a voltage over the crystal that can be read out to be 
a measure for the applied pressure. In the opposite way, a voltage over the crystal will 
expand the crystal. This can be exploited to displace elements in actuating devices. Fig. 
1.4 shows a schematic of a piezoelectrically driven micropump [12]. 
 

 
Fig. 1.4 Piezoelectrically driven micropump (Reproduced from [12]) 

 
Nowadays, ink jet printers make use of piezoelectric micropumps to fire tiny ink droplets 
on paper. Because piezocrystals expand only a tiny bit upon an applied voltage, and 
because of the very linear relation between the two, these crystals are eminently suitable 
for highly precise positioning. Sub-Ångström positioning is essential in for example 
Atomic Force Microscopy.  
 
Piezo-resistive effect 
 
The resistivity of some metals and especially semiconductors varies (linearly) with strain. 
Silicon is a noteworthy example. The piezo-resistive effect finds its most common use in 
strain gauges. A film of piezoresistive material is applied on a flexible geometry. If this 
geometry is deformed, the change in resistance in the film due to the strain is a measure 
for the pressure that deforms the geometry. Note that this physical principle can only be 
used for passive, sensing applications, unlike piezo-electricity, which can be used in an 
active sense as well. 
 
Thermal conductivity 
 
There are several methods available for sensing properties of fluid flows. These 
properties include amongst others mass flow, flow velocity, heat capacity. In [13] a 
sensor is demonstrated based on heat pulses traveling upstream and downstream. This 
relies on the thermal conductivity of the fluid and of the elements picking up the heat 
pulse. A displacement sensing device based on thermal conductivity is given in [14]. 
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Optics 
 
Very high displacement resolution can be obtained by optical readout of the sensor. Loh 
[15] used an interferometer to readout a cantilever displacement with a resolution of 3 × 
10-3 Å. Using an array of interdigitated cantilevers, he developed an accelerometer with a 
resolution of 40 ng/√Hz (1 ng = 9.8 × 10-9 m/s²).  
A different implantation of optic readout is reflection of a laser beam. Sharp timing of 
laser pulses hitting reflectors placed on the moon revealed that our natural satellite 
recedes from the earth at 3.8 cm/year. More into the world of microsensors is monitoring 
the position of a reflected laser beam on a position sensitive detector (PSD) to accurately 
determine the frequency of a vibrating Atomic Force Microscope cantilever (see also 
Chapter 5). Admittedly, also in the latter case the optical read-out part is not yet micro-
machined itself.  
The relatively young field of Micro Opto Electro Mechanical Systems (MOEMS) 
concerns with integrating more and more optic elements on the microscale. In actuating 
sense for example optical switches, and for sensing purposes the possibilities of 
micromachined optically pumped magnetometers are explored [16,17]. Optical excitation 
of atoms in a micromachined gas cell enables to obtain a very sensitive magnetic field 
sensor which due to its small dimensions is highly desired for space applications. 
 
Electron Tunneling 
 
Perhaps the finest resolution in displacement sensing can be achieved by electron 
tunneling, in the order of 10–4 Å/√Hz. This extremely high resolution is due to the 
exponential decay of tunneling current with distance. This way, Scanning Tunneling 
Microscope can be used to detect height differences in surfaces that measure a small 
fraction of an atom. Liu [16] used tunneling to readout the displacement of a moving 
element in an accelerometer to achieve 20 ng/√Hz. 
 
Inductive coupling 
 
Superconducting Quantum Interference Devices (SQUIDs) [18,19] are the most sensitive 
magnetometers around, capable of detecting fields weaker than 1 fT. In particular, they 
are very suitable to sense with extreme precision the magnetic fields produced by small 
currents running underneath the sensor. This way they are very suitable for displacement 
readout. The MiniGRAIL project [20,21 and references therein] aims to detect 
gravitational waves through tiny deformations of a massive sphere. The expected 
(vibrating) deformations are in the order of 10–20 meter. These deformations are amplified 
with two orders of magnitude, which means that the SQUIDs still need to notice 
deflections of 1 atto-meter, about a thousandth of a proton size. 
Another example of inductive coupling is flux concentrators to locally amplify magnetic 
fields, which can then be sensed by a Hall element [22] or a GMR sensor [23]. 
 
Capacitive coupling 
 
Capacitive MEMS are employed as actuating as well as sensing devices. Capacitive 
displacement sensing does not need cooling, unlike superconducting inductive 
displacement sensing. Still, it can still be done very accurately by AC impedance 
measurements. The capacitive coupling between two electrodes can also be exploited to  
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establish movement of flexible components in actuating devices. More on capacitive 
MEMS is given in the next section. 
 
Resonance 
 
Resonating elements are applied in very accurate measurements of numerous physical 
properties. For example, Non-contact AFM (see chapter 5) is able to scan many kinds of 
interactions between the tip of an AFM and a surface, through variations of the vibration 
frequency of a cantilever. These frequency variations can be detected with high precision. 
Of course, the resonating element itself must again be read-out, in order to transform the 
movement into an electric signal.  
 
 
1.2 CAPACITIVE MEMS 
 
One continent in the world of MEMS is centralized around the capacitive coupling 
between two electrodes: Capacitive MEMS. Its simplest appearance is the parallel plate 
configuration, see Fig. 1.5: 

 
 
Fig. 1.5 Parallel plate capacitive MEMS. The drawing includes measurement electronics 
(bottom right) and a possible voltage control. 
 
The capacitance of this configuration is proportional to the reciprocal separation distance, 
see Eq. (1.1):  
 

0 A
C

z

ε
= . (1.1) 

 
Here A is the capacitive area and z the distance between the plates. ε0 is the permittivity 
of vacuum, a constant of nature, with the value 8.854·10–12 F/m (Farad per meter). If one 
electrode is attached to a flexible suspension, this separation distance and hence the 
capacitance becomes variable. This principle can be exploited to detect tiny 
displacements. A sensitivity of better than 10–3Å/√Hz has been achieved [24]. Examples 
are capacitive readout of AFM cantilevers, inclination sensors and flow sensors, for 
instance the array of “cricket hairs”, see Fig. 1.6 [25, 26]: a fluid flow bends the hairs, 
which displaces capacitively coupled elements at the base of the hairs. The resulting 
change in capacitance is a measure for the strength of the flow. The four ‘feet’ make the 
sensor also sensitive to the direction of the flow.  Accelerometers exist already since the 
early days of capacitive MEMS; see Fig. 1.7 for a typical schematic [27]. An 
accelerometer measures the acceleration of a surrounding body (vehicle, satellite) 
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Fig. 1.6 (left) “Crickett hairs”: an array of capacitive flow sensors.  
Fig. 1.7 (right) Basic structure of a bulk micromachined accelerometer.  
 
through the inertia of a suspended test mass. The mass contains electrodes that are 
capacitively coupled to fixed electrodes 
During acceleration, the mass will be closer to one or the other fixed electrode, which 
results in a difference between the two capacitances. The development of accelerometers 
has nowadays become sufficiently mature to be well commercially active, for example by 
delivering sensors to example automotive industry. In metrology, the accelerometer finds 
important use in for instance the study of gravity fields, see Chapter 6. 
Additionally, MEMS can be used as active components as well. If a voltage is applied 
across the electrodes, they will attract. For small voltages, the electric force will be 
balanced by the stiffness of the suspension. Resonators [28, 29] and tunable capacitors 
[30] make use of this property, as well as feedback designs: this way the sensing and 
actuation aspects of MEMS devices are combined. Feedback can be applied to keep the 
test mass of an accelerometer in its central position: the force (voltage), required to keep 
it there, is a measure of the experienced acceleration. An important advantage is that the 
operation range of the sensor is significantly enhanced, as contact between the electrodes 
is avoided. A final example of the application of voltage actuated MEMS is switches 
[30]: capacitive MEMS experience an instability for voltages above a certain threshold 
(see subsection 2.1.2): the spring force cannot balance the electric force anymore. Two 
electrodes are then used for attraction, bringing two different electrodes into a conductive 
contact. This way, very fast, miniaturized switches can be made.  
 
 
1.3 MOTIVATION AND ADDRESSED QUESTIONS 
 
Recent efforts in the development of high-precision capacitive MEMS-based sensors 
have involved challenging specifications concerning reliability and sensitivity. 
Depending on the specific design and application, there are always several factors 
limiting the performance of the device: mechanical and electric noise, challenges in and 
precision of fabrication. Sometimes it is not the device itself that forms the biggest 
limitations, but the readout-electronics. This thesis revolves around the often-encountered 
effect of charge trapping: unwanted (parasitic) electric charges, stuck in the bulk or at the 
surface of used dielectric materials, introduce additional forces that disturb the accuracy 
of the device. It is demonstrated in Chapter 6 for a few examples that very low charge 
concentrations are sufficient to degrade the sensor below the specifications. The fact that 
for none of these devices the design incorporates measures to minimize charge trapping 
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indicates that the influence of trapped charges is overlooked or at least underestimated. 
Initial concentrations may already be introduced by the fabrication process, and repeated 
operation causes further accumulation. While a sensor may be calibrated to compensate 
for an initial, stable distribution of parasitic charge, it is the hardly controllable instability 
(drift, hysteresis, noise) of charge accumulations during operation that provides extra 
challenges of meeting target specifications in the development of a particular sensor. This 
operation-induced accumulation is especially pronounced in micro-switches: each contact 
allows the exchange of significant loads of static charge, which after a certain number of 
cycles results in “sticking”: the switch does not open again after removal of the actuation 
voltage [31].  
In this thesis the phenomenon of charge trapping is probed at two levels: device-level and 
fundamental level. It is investigated what influence parasitic charges have on the 
characteristics of capacitive MEMS-based sensors. These sensors sometimes have to 
operate under cryogenic circumstances, either intentionally cooled to reduce thermal 
noise, or the environmental conditions imply this, notably if employed in space. The 
corresponding question is how the influence of trapped charges changes when the 
environmental temperature is changed to the cryogenic regime. Can this change of 
influence from trapped charges be discerned from change of mechanical characteristics of 
the sensor? If not, what is needed to decouple these effects? 
What processes guide the transport of charges through the material? What information 
can be retrieved about this from the two levels of research? In order to resolve the 
geometrical distribution of trapped charges in a dielectric layer, it is desirable if 
conducting AFM is able to resolve depth and magnitude of a localized charge. How can 
this be achieved? 
The work presented in this thesis seeks to address these questions through analysis of 
measurements on capacitive MEMS sensing devices and a new developed model for the 
interaction of a conducting AFM tip with a localized charge, which is coupled to practice. 
 
 
1.4 OUTLINE 
 
This thesis can be divided in two main parts: MEMS-based research (chapters 2, 3, 4 and 
6) and AFM-based research (chapter 5), with both parts in their own ways related to 
charge trapping. 
Chapter 2 covers MEMS theory as far as found relevant in this thesis. In the first section 
the basic statics for general capacitive MEMS are provided. The pull-in effect is covered. 
Then a distinction between voltage control and charge control is made. Finally, the 
presence of dielectric layers in MEMS is included. Section 2 covers some beam 
deflection theory, important for the analysis of experimental work treated in Chapter 3. 
Then the influence of trapped charges, their origin and transport mechanisms are treated. 
There is a section devoted to theory used for the analysis of resonance measurements. 
The chapter finishes with the effects of non-parallel electrodes and the Casimir force. 
Chapter 3 is devoted to experimental work performed on available RF MEMS devices, 
realized in a European project for the development of sensitive MEMS for metrology. 
Two classes of devices have been investigated for the effects of charge trapping at largely 
varying temperatures (4K-300K). The thermal variations turned out to be of dramatic 
influence on the performance or, rather, the characteristics of these devices. Deformation 
and build-up of thermo-mechanical stress affected capacitance and sensitivity to a large 
extent. For this reason, test structures were designed for better withstanding temperature  
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variations, which is the subject of Chapter 4. The designs and relevant considerations are 
provided there, as well as a detailed account of the novel fabrication process. After the 
structures passed initial tests with simultaneous interferometry and capacitance-voltage 
measurements, they were characterized in more detail, on which basis considerably 
improved thermal characteristics are demonstrated. Measurements of temperature 
dependent charge trapping effects are then discussed, together with some high vacuum 
tests. At this point, the MEMS part concludes. 
Chapter 5 introduces the principles of Force Modulated Atomic Force Microscope. With 
this operation mode, the AFM cantilever is deliberately brought in oscillation close to its 
resonance frequency. Interactions between the tip and the sample modify the resonance 
frequency, which is kept constant during scanning. This technique enables on-situ study 
of trapped charges, now seen as localized entities, whereas in device-level study only 
their combined effects can be brought to light. Experimental work relevant of the 
research is discussed. 
The larger part of this chapter is taken up by a theoretical account of the electrostatic 
interaction between a biased tip and sample. The latter consists of a dielectric layer on a 
metal electrode. Of special interest is a localized, parasitic charge in the dielectric. 
Models known from literature to describe the tip-sample interaction show some 
suspicious results and predictions. A new model has been developed that provides much 
different results; generally a dramatically larger interaction strength. On fundamental 
grounds, compared to finite element modeling and on the basis of empiricism the new 
model generally outperforms the existing models. 
Chapter 6 concludes the main body of the thesis by considering what effects trapped 
charges can have on contemporary capacitive MEMS sensors. Considered here are an RF 
power sensor and a gravity gradiometer. It is demonstrated that demands on the 
performance of these sensors are such, that levels of charge trapping encountered 
typically in practice are clearly much higher than can be allowed. If the phenomenon of 
charge trapping is not considered or underestimated in the designs, performance demands 
will be impossible to meet. 
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CHAPTER 2  
 
 
 

MEMS THEORY 
 
 
In this chapter some basic theory relevant in the context of capacitive MEMS will be 
discussed. Section 2.1 describes the mechanism of attraction of capacitively coupled 
electrodes. For small voltages, this force is quadratic to good approximation. The 
phenomenon of pull-in is covered. At some critical voltage the position of the flexible 
electrode will become unstable. Related to this is a short discussion of voltage control 
and charge control. As many practical devices involve dielectric layers, the effect of the 
presence of dielectrics on the so far established theory is digressed on. Section 2.2 is a 
treatment of the theory of the deflection of clamped-clamped beams, loaded with an 
electrostatic force. It will zoom in on how MEMS characteristics, especially the stiffness, 
depend on temperature. Section 2.3 will deal with how parasitic charges affect MEMS 
characteristics. The relation of parasitic charges with “built-in voltage” is laid. Various 
possible charge transport mechanisms through dielectrics are reviewed. The mechanical 
characterization of newly fabricated MEMS structures (Chapter 4) call for a coverage of 
resonance experiments in section 2.4. At last, in 2.5 a few effects (non-parallelity, 
Casimir force, fringe effect and breakdown) are shortly discussed. 
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2.1. CAPACITANCE – VOLTAGE RELATION 
 
2.1.1 Energy and forces in capacitive MEMS structures 
 
Capacitance C is defined as the proportionality constant between the amount of charge Q 
on a conductor and the potential at which the conductor is found: 
 
 Q = CV. (2.1) 
 
The capacitance indicates how much charge can be stored on the conductor given a 
certain potential. It is measured in Farad, which is a coulomb per volt. It is important to 
realize that the relation between potential and charge is always linear, irrespective of for 
example the shape of the conductor. It is worth stressing that capacitance is a purely 
geometric quantity, defined by sizes, shapes and dielectric constants if dielectrics are 
present, and does not intrinsically depend on electrostatic quantities such as charge, 
electric field and potential. 
As potential is a relative concept, so is capacitance. It is possible though to define a 
potential and capacitance for a single conductor with respect to infinity, if potential is 
defined there, for example V(|x| → ∞) → 0. The capacitance of a spherical conductor of 
radius R is 4πε0R then1. If the sphere contains a charge Q, its potential is Q/C. In systems 
of many conductors, a capacitance between each pair of conductors can be defined.  
In capacitive MEMS structures we have the usual configuration of two conductors, where 
the potential of one is defined with respect to the other conductor and thus the 
capacitance between them. Consider now a capacitor of arbitrary geometry with 
capacitance C and (intermediate) potential V. Now we take a small amount of charge dq 
from one electrode and transport it to the other electrode. In doing so, we have to 
overcome the potential difference v. This action will raise the potential by an amount dv = 
dq/C. We keep on transporting charge until a final amount of charge Q and a 
corresponding potential V is reached. The total electrostatic energy Ue  stored in this 
capacitor thus becomes:   
 

∫ ===∫=
Q

CV
C

Q
dq

C
q

vdq
e

U
Q

0

2
2
1

2

2

0
 (2.2) 

 
Let us now consider a capacitive MEMS structure (Fig. 2.1) which consists of two 
capacitively coupled electrodes. The terminals are connected to a voltage source, 
maintaining the electrodes at a constant potential difference V, by storing an amount of 
charge Q on one of the electrodes and –Q on the other. Peculiar of capacitive MEMS 
structures is that one of the electrodes has freedom of motion within a defined 
suspension, assumed of stiffness k which is constant for small displacements.  
 

 

                                                 
1 Taking the earth’s radius to be 6378 km, this means our planet’s capacitance comes out at 710 µF, 
quite a ‘household’ value, as capacitances of this order are commonly used in power source 
stabilization in televisions and computers. Hence less than 9 electrons need to be scattered at each 
square meter to raise our planet’s potential by one volt. 
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Fig. 2.1 Capacitive MEMS with stiffness k and a voltage V, which establishes a 
charge Q on the movable top electrode (and –Q on the bottom), causing the 
bridge to displace from the unactuated position z0 to  z. 
 
Now if the top electrode is displaced a distance dz, the energy U = Ue is changed by an 
amount of work done on the system dWin minus work done by the system dWout. The 
process takes place quasistatically, hence kinetic energy terms are neglected. 
 
 dU = dWin – dWout . (2.3) 
 
In this case, work is done by the voltage source. Under a constant voltage V, it transports 
an amount of charge dQ, contributing VdQ to dWin. The change in mechanical energy 
dUm through stretching of the spring may very well be subsumed in change of the internal 
energy dU, but in this case it is chosen to consider the electrostatic device to perform 
work dWout on the spring2. Any other work done by the device, such as displacing fluids, 
would also be absorbed in this term. This is not considered here. The force on the spring 
Fs thus becomes: 
 out indW dU dW

Fs dz dz dz
= = − + .  (2.4) 

 
In the present case, this force is entirely delivered by the electric force.  With Eqs. (2.1) 
and (2.2): 
 

2 21 1
2 2el

dC dQ dC
F V V V

dz dz dz
= − + = . (2.5) 

 
It is seen that if the source work term dWin is not taken into consideration for a voltage 
controlled device, the electric force would come out with the wrong sign. The case of a 
charge controlled device is treated in subsection 2.1.3. The electric force causes a 
displacement of the movable top electrode, which changes the capacitance. It is clear that 
the position of the bridge electrode and thus the position of the bridge electrode (not 
surprisingly) depends symmetrically on the voltage, i.e. C(V) = C(–V).  
The experiments presented in Chapters 3 and 4 are performed on samples on which in 
many cases the interpretation assumes a parallel plate configuration (Fig. 1), which in  

                                                 
2 The reason for attributing the mechanical energy to Wout rather than U is to extract a separate 
formula for the electric force. 
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Chapter 4 can be considered exact3. The capacitance of a parallel plate capacitor with 
electrodes separated a distance z (see Fig. 2.1) is given by Eq. (2.6): 
 
 

0 A
C

z
ε

= . (2.6) 

 
Here ε0 is the permittivity of free space and A the effective capacitive area, i.e. the area 
that top and bottom electrodes overlap. It is assumed that the separation z is much smaller 
than the lateral dimensions, which allows for neglecting fringe fields. For a parallel plate 
capacitor, as in Fig. 1, the electric force Eq. (2.7) is found by inserting Eq. (2.6) into Eq. 
(2.5): 
 

2 20

2 22el

A C
F V V

zz

ε
= − = − . (2.7) 

 
The structure is assumed to be elastically movable: the displacement is proportional to 
the applied force. The corresponding mechanical potential energy is given by: 
 
 

0

2

0' ( ') ' ½ ( )
z

m

z

W z k z dz k z z= − = −∫ . (2.8) 

 
Here z0 is defined as the equilibrium position of the bridge structure in absence of any 
loading forces and z the actual position. The second equality sign in Eq. (2.8) applies in 
cases that deflections are sufficiently small for the spring constant to be independent of 
deflection. For appropriate definitions of stiffness and deflection, Eq. (2.8) is valid not 
only for parallel plate capacitors with a suspended bridge, but also in cases where 
deflection is a function of the lateral position, for example a cantilever beam or a 
clamped-clamped beam. In equilibrium, the electric force Eq. (2.5) and the spring force 
on the bridge –Fs = –dWm/dz balance: 
 
 

20
02

( ) 0
2

A
V k z z

z

ε
− + − = . (2.9) 

 
The first term represents the electric force and the second the mechanical force. 
Rewriting this expression yields an implicit relation between capacitance and voltage, see 
Eq. (2.10): 
 4

20

2
0

1 1C
V

C CC
− = α⎛ ⎞

⎜ ⎟
⎝ ⎠

. (2.10) 

 
Here C0 = C(V = 0) = ε0A/z0 is the capacitance at zero bias voltage. By definition, 
 

                                                 
3 That is to say, the underlying design of the structures is such that the electrodes remain parallel 
during actuation, unlike for example the RF-sensors in Chapter 3. Those bridge electrodes deform 
to a curved shape when actuated. 
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0

4

02

A

kz

ε
α ≡ . (2.11) 

 
There exists an explicit solution for C from Eq. (2.10) as a function of the bias voltage V. 
Because of its complicated form it is however common practice to take the Taylor 
expansion of the left-hand side of Eq. (2.10), which is valid for small voltages so that C is 
close to C0. This reduces the capacitance – voltage relation to a simple quadratic 
expression: 
 2

0C V C= α + . (2.12) 
 
In the next subsection a notion of ‘small’ voltages will be developed, after which the 
accuracy of this approximation can be estimated. When voltages increase, or if a still 
better approximation is desired, one can make a quadratic approximation of the left-hand 
side of Eq. (2.10) around C = C0. Equating this with αV² and solving for C leaves still a 
relatively tractable explicit relation: 
 
 

20
0 2

0

61
7 1

6
C

C C V
kz

= − −
⎛ ⎞
⎜ ⎟
⎝ ⎠

. (2.13) 

 
Needless to say, for small voltages this reduces exactly to the parabolic approximation 
Eq. (2.12). The disadvantage of this elliptic form is that for data-analyses it involves the 
somewhat more cumbersome method of parameter-fitting (providing values for C0 and 
the coefficient of V²), which requires reasonable preliminary estimates of the coefficients 
as starting values. Furthermore, the form and its coefficients are intuitively less readily 
associable to a series of measurement data. In contrast, the parabolic form of Eq. (2.12) 
involves only basic polynomial fitting and the thus estimated values for C0 and α are 
immediately recognizable as zero-voltage capacitance and parabolic curvature, which is 
immediately associated with sensitivity. 
A final point of attention concerns the remark made in the beginning of the subsection 
that capacitance does not depend on electrostatic quantities such as voltage, while in Eq. 
(2.12) and Eq. (2.13) such relationships are explicitly formulated. This conceptual 
paradox is easily resolved by recognizing that the particular geometry, which determines 
the capacitance, can be influenced by external forces. They can be of any nature, and in 
the case of capacitive MEMS they happen to be electrostatic.  
 
 
2.1.2 Pull-in voltage and electromechanical coupling 
 
For higher voltages, the resulting non-linear electrical force can not be balanced anymore 
by the linear working of the mechanical force. Indeed, there exists a point at which an 
infinitesimally small increase in voltage would generate an infinitely large displacement 
of the bridge, which implies dz/dV → ∞. For the derivation of the voltage at which this 
instability, called pull-in, occurs, Eq. (2.9) can be invoked, because the forces are just still  
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balancing. Solving this expression for V and equating the derivative dV/dz = (dz/dV)–1 = 0 
provides for a configuration in which the plates remain parallel the following result: 
 
 3

0

0

8
27pull in

kz
V

A−
=

ε
. (2.14) 

 
For this configuration, pull-in occurs when the bridge has lowered to 2/3 of the zero-bias 
state or, equivalently, the capacitance has increased by a factor of 1½ compared to the 
unactuated state. At this point, the spring force ceases to prevent collapse of the top 
electrode. Pull-in limits the operation range of a capacitive MEMS sensor for 
displacement or electromagnetic related quantities such as the power through a coplanar 
waveguide, although this can be resolved by equipping the device with a feedback circuit 
that keeps the bridge in place. If a MEMS device is deployed as a tunable capacitor, there 
are some methods available to considerably stretch the ‘tuning ratio’ (Cmax / Cmin) of 1½. 
Tuning ratios of 20 have been reported in [1]. On the other hand, not only does the pull-in 
effect serve useful purposes in switches, it also constitutes a characteristic voltage for a 
particular design, for which reason it has been proposed to use it as a standard voltage 
reference [2-4], concurring with Zener diodes in stability. 
The pull-in instability is not yet reflected in the parabolic approximation Eq. (2.12), but 
the elliptic approximation Eq. (2.13) already contains this strong non-linear behavior. 
Here dz/dV → ∞ occurs when the expression underneath the square root vanishes, which 
predicts instability for a voltage that is exactly a factor ¾ lower than the ‘correct’ 
expression Eq. (2.14). 
The following remark is worth making: Assuming the device under test is a parallel plate 
capacitor and the measurement is being carried out well (no important unknown parasitic 
capacitances for example), a parabolic fit through a set of data at small voltages already 
suffices for estimating pull-in, without requiring further knowledge of the sample, such as 
for example the gap height z0. Because in the parabolic approximation Eq. (2.12) 
naturally the same coefficients (C0, α) appear as in the original force balance Eq. (2.10) 
from which it was derived, the pull-in voltage, Eq. (2.14) can be expressed in these 
coefficients alone: 
  

04
27pull in

C
V − =

α
. (2.15) 

 
The existence of a characteristic voltage such as pull-in voltage allows for a notion of 
‘small’ voltages: For V << Vpull-in the parabolic approximation Eq. (2.12) provides an 
accurate description of the dependence of the capacitance on the voltage. More 
concretely, for V < 0.2Vpull-in, the difference between the implicit function and its 
quadratic approximation is practically zero, while for V = 0.5Vpull-in the approximation 
predicts a capacitance that is about 0.5% too low. This may be considered a limit below 
which the parabolic approximation is very well applicable. For larger voltage, the 
difference rapidly grows to about 1% for V = 0.6Vpull-in and to 23.5% for V = Vpull-in. These 
numbers are independent of the electrode area or the initial capacitive gap. The above-
mentioned derivation of the pull-in voltage is tightly linked to the notion of 
electromechanical coupling, with which is meant how mechanical properties, in  
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particular the spring constant, can be affected when under influence of electrostatic 
interaction. This is digressed on along a short discussion that stays intuitively close to the 
physics that are involved. Let us reconsider Eq. (2.3). Suppose we exert an additional 
external force Fext on the bridge, for example by pushing it down with a finger or putting 
a weight on it. The input work then receives, apart from the source, an extra contribution 
Fextdz. The total balance now looks: 
 
 2

0½ ( )extV dC VdQ F dz k z z dz= + − − . (2.16) 
 
Again, the left hand side term is the increase of internal (electric) energy of the MEMS 
device. The right hand side terms are the source and external work done on the MEMS 
and the last term the work done by the MEMS. Dividing by dz and rearranging gives: 
 
 

2

0( ) ½ext

dC
F k z z V

dz
= − − . (2.17) 

 
As said, the external force can be of any nature in principle, but in particular an 
(oscillating) electric force is of our interest, when dealing with resonant behavior, see 
section 2.4. The electromechanical stiffness is defined as the reluctance with which the 
bridge responds with displacement to an external force. We have: 
 
 

ext
EM el

dF
K k k

dz
≡ = + . (2.18) 

Where we have defined 
 2

2 20

2 3
½el

Ad C
k V V

dz z

ε
≡ − = − . (2.19) 

 
as the electric stiffness, which offers a negative, voltage dependent contribution to the 
effective, or electromechanical stiffness KEM. The equality sign in Eq. (2.19) holds in case 
of a parallel plate capacitor. We now have a better founded argument in the derivation of 
the pull-in voltage in this type of device, which follows actually the same route as the one 
to Eq. (2.14). Namely, it is now easily recognized that some point must exist at which the 
effective stiffness Eq. (2.18) will decrease to zero and the bridge is on the verge of 
collapsing. Combining Eq. (2.19) with KEM = 0 in Eq. (2.18) and Eq. (2.9) again yields 
the pull-in voltage. 
 
 
2.1.3 Charge control  
 
As we have seen in the previous subsection, the bridge of a capacitive MEMS connected 
to a voltage source cannot be lowered for the complete gap in a stable way: below z = 
2z0/3 pull-in occurs. It is nevertheless possible to lower the bridge steadily over the 
complete gap; this requires disconnecting the bridge from the voltage source and employ 
charge control instead. In a “Gedankenexperiment”, one could pick a pair of tweezers to 
take charges from the fixed electrode and drop them on the bridge electrode. In this case: 
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2
02 22e e

d d Q Q dC Q
F U

dz dz C dz AC
= − = − = = −

ε
. (2.20) 

 
Again, the last identity holds exclusively for a parallel plate capacitor. The force is now 
independent of the height. In fact we have just a test charge Q (bridge) in the field of an 
infinitely wide sheet charge Q/A (fixed electrode). Balancing by the spring force k(z0 – z) 
yields the following dependence of the capacitance on the charge: 
 
 

0

2

0 0/ 2Q

A
C

z Q kA

ε
=

− ε
. (2.21) 

 
Adding charges will lower the bridge and increase the capacitance. The bridge touches 
for 0 02downQ kz A≡ ε , when the capacitance Eq. (2.21) tends to infinity. Initially, adding 

charges will also increase the potential difference between the plates, but this is 
compensated for the fact that a lowered bridge decreases the voltage again. For the 
voltage we have: 
 2

0
0 02Q

Q Q
V z

A kA
= −
ε ε

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (2.22) 

 
This voltage has a maximum at 1

max 3
0.58down downQ Q Q= ≈ , for which it attains a value 

 
 3

0
max

0
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27

kz
V

A
=

ε
, (2.23) 

 
which is equal to the pull-in voltage Eq. (2.14) for a voltage-controlled MEMS bridge. 
Automatically, this maximum occurs then when the bridge is lowered z0/3 downwards 
and the capacitance has increased to 1½ of its original value, as is easily checked. This 
voltage dependence is plotted in Fig. 2.2. 
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Fig. 2.2 Voltage dependence on charge in charge control 

 
As can be seen from Eq. (2.22), the initial slope of this graph is 1/C0. Charge controlled 
operation has some interest in the field of current-driven MEMS switches [5,6]. 
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2.1.4 Dielectric layer 
  
In many cases capacitive MEMS structures contain dielectric layers covering at least one 
of the electrodes. Either intended, for example a layer protecting against  damage or 
shortcut resulting from pull-in, or ‘half-intended’, as in the case of the fist generation HF 
power sensors described in Chapter 3, where a bridge made of dielectric material (silicon 
nitride) functions as a carrier for the electrodes which are placed on top. Here the 
dielectric layer is not applied in order to have dielectrics there, but is a necessity imposed 
by design. At last, dielectrics come ‘along the way’, unintended, for example the ultra-
thin layer of native oxide that forms on aluminum electrodes, as described in the second 
generation HF power sensors in Chapter 3 and the double beam structures in Chapter 4. 
Any modifications to the relevant expressions in the previous subsections are restricted to 
parallel plate capacitors. A schematic representation is given in Fig. 2.3:  

 
Fig. 2.3. Parallel plate capacitor with a dielectric layer of thickness d, forming a series 
connection of a dielectric capacitance Cd with air (or actuated) capacitance Ca. The 
voltage V of the top electrode is with respect to the bottom electrode. 
 
A single dielectric layer is assumed on top of the bottom electrode. However, the 
relations in this subsection apply equally in case of two dielectric layers, one on each 
electrode, whose individual thicknesses add up to d.  In this particular configuration of a 
parallel plate capacitor, the surface of the dielectric constitutes an equipotential. Rather 
by chance geometry coincides with the electrostatic ‘landscape’. Hence the original 
capacitance divides into two series capacitances; a variable one (Ca) over the air gap and 
a constant one over the dielectric (Cd). The total applied voltage Vt = Va + Vd is distributed 
over the two capacitors as: 
 

d
a t

a d

C
V V

C C
=

+
     and     a

d t
a d

C
V V

C C
=

+
. (2.24) 

 
In a measurement, it is the total voltage we apply and a total series capacitance that is 
returned. The total capacitance Ct combines the two series capacitors following: 
 
 

a d
t

a d

C C
C

C C
=

+
, (2.25) 

 
where each of the single series capacitors has a larger capacitance value than the total 
series capacitance. If Eq. (2.25) is solved for Ca and is together with Eq. (2.24) inserted 
for the quantities C and V respectively in Eq. (2.12), the parabolic relation for the series 
configuration is obtained: 
 2

0( )t t t tC V V C= α + . (2.26) 
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Here 
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 (2.27) 

 
is the total series capacitance in absence of actuation, where C0 denotes the unbiased 
capacitance over the air gap alone. Furthermore, 
  
 4
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d
t a

d

C
C C

α = α
+

⎛ ⎞
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⎝ ⎠

, (2.28) 

 
in which αa, the “gap sensitivity”, is defined as in Eq. (2.11) but with z0 replaced by  
z0 – d. However, the purpose was to compare with the absence of a dielectric layer, i.e. 
with Fig. 2.1 and corresponding expressions.  For this, we assume a dielectric layer with 
permittivity ε of thickness d. Defining η ≡ d/z0 the portion of the unactuated gap that is 
taken up by the dielectric layer, it is easily verifiable that the ratio r of the capacitance 
including dielectric layer to the capacitance without becomes 
 
 

0

0

1
1

1 (1 1/ )
tC

r
C

≡ = ≥
− η − ε

. (2.29) 

 
The presence of a dielectric layer increases the capacitance, as is well known from 
standard electrostatics. It is insightful to check the limiting cases: For η → 0 and η → 1 
(no dielectric and completely filled with dielectric) we have r → 1 and r → ε 
respectively. For ε → 1 (no dielectric) we have again r → 1. At last, ε → ∞ lets the 
dielectric grow to become a conductor in a pure electrostatic sense (infinite 
polarizability), which in effect reduces the original capacitive gap, which is reflected in  r 
→ (1 – η)–1. Now, the force balance on the bridge is given by: 
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, (2.30) 

 
in which u ≡ (2kε0

2A2)-1. Using Eqs. (2.24), (2.25) and (2.27) to substitute Ca, Ca0 and Va 
in Eq. (2.30), we are left with an expression for the force balance in terms of overall total 
capacitances and voltages: 
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Cd drops out. In the linear approximation for Ct close to Ct0 this expression reduces to 
 
 2

0( )t t t tC V V C= α + . (2.32) 

Here 4

0t tuCα ≡ , so as a result: 
 4 2

0( )t tC V r V rC= α + , (2.33) 
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where α is defined as in Eq. (2.11). The conclusion is that the zero capacitance increases 
by a factor r as defined in Eq. (2.29) upon inserting a dielectric layer, as expected. The 
parabolic coefficient, the ‘sensitivity’, increases by a factor of r4, which is not surprising 
too when considering that α = uC0

4 contains four factors of original zero-capacitances.  
A logical consideration is how the pull-in voltage alters by the insertion of a dielectric 
slab. First, the  capacitance is  
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, (2.34) 

 
where an ‘effective gap reduction’ has been defined. It describes how much the gap is 
effectively reduced by the presence of the dielectricum. We can write r = z0/(z0 – deff). 
The magnitude of the electrostatic force in a capacitor with dielectric layers having a 
combined thickness d is given by: 
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This, combined with Eqs. (2.33) and (2.20) in which KEM = 0, yields the pull-in voltage 
Eq. (2.36), 
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which is smaller than the case without a dielectric due to the enhanced electric coupling. 
The critical height and capacitance at which the bridge becomes unstable is in this case: 
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Even with a dielectric layer the pull-in capacitance is 1½ times that of the uactuated 
capacitance. It is possible to insert a dielectric layer sufficiently thick so that the bridge 
never arrives at an unstable point within the region in which the bridge can freely move. 
In other words, the bridge can be brought in contact with the dielectric surface over a 
controlled trajectory. Of course a dielectric that fills the complete airgap radically 
prevents pull-in – and any movement whatsoever. But more in general, the above is 
satisfied whenever 
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In the context of dielectric layers it is meaningful to address the topic of pull-out voltage. 
Consider a parallel plate capacitive MEMS with at least one dielectric layer. If the 
voltage crosses the threshold of pull-in, the bridge collapses. In this case however, the 
capacitance will remain finite after collapse, what we will call down capacitance, where  
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on purpose the term “pull-in capacitance” is declined, which is rather associated with the 
capacitance at which pull-in is about to occur. In this case, the down-capacitance 
coincides with the dielectric capacitance4: 
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To release a pulled-in bridge, the voltage knob has to be turned back so that the electric 
and mechanical forces cancel for z = d: 
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so that 
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The whole process is illustrated in Fig. 2.4. 

 
Fig. 2.4 Theoretical C(V)-graphs, showing the influence of a dielectric layer (thick 
curve).It is compared to the situation without dielectric (thin curve), which is normalized 
to its unactuated capacitance C0 and its pull-in voltage Vpi. Assumed is deff = 1/3, for 
example SiO2 (ε = 3.9) filling 45% of the gap. This increases the capacitance by a factor 
r = 1½. The solid parts of the curves represent the physically accessible and stable states 
of the corresponding devices. The long-dashed parts of the curves correspond to 
continued (V,C) - solution set to the implicit relations Eq. (2.10) (thin) and Eq. (2.31) 
(thick). Arrows indicate an operation cycle of increasing the voltage starting from V = 0. 
At pull-in voltage, the bridge follows the short-dashed path. It collapses to Cdown,, which 
value is determined by the thickness(es) and the relative permittivity of the dielectric 
layer(s). Decreasing the voltage then will not have any effect on the bridge until it 
subsides below a threshold voltage (pull-out). The innermost short-dashed path is 
followed and the bridge is pulled upward then. 

                                                 
4 This is because the bottom face of the movable top electrode is always parallel to the top face of 
the underlying dielectric layer, so that full contact will be established upon pull-in. For a clamped-
clamped beam for example, a pulled-in top electrode has only a very small contact area in the 
centre, while on both off-centre areas a narrow air gap is maintained, that keeps the down-
capacitance below the dielectric capacitance.  
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2.2 BEAM DEFLECTION AND STRESS 
 
In many cases, MEMS structures are not readily described by the simple parallel plate 
configuration dealt with in the previous section. Rather, a natural consequence of the 
commonly applied surface micromachining techniques (patterning and stacking of layers) 
is that the movable part of the MEMS devices consists of a flexible membrane, floating 
above an electrode and clamped at one side (a cantilever), two sides or even four sides 
(also called ‘diaphragm’)5. This membrane may be the electrode itself (it is made of, for 
example, aluminum), or be the carrier of an electrode on it (silicon nitride is a suitable 
and widely used material). An accurate description requires the theory of the bending of 
plates and beams when subjected to a certain load. A renowned standard work in this 
field is [7]. This section will concentrate on clamped-clamped beams only, because of its 
relevance to analysis of RF sensors, in particular stress (section 3.3). 
 
2.2.1 Beam equation 
 
Consider now a beam6 of length L, width b, and thickness h, subjected to a transverse 
load7 P(x) and an axial (tensile) force S (see Fig. 2.5): 

 
Fig. 2.5 Loaded clamped-clamped beam 

 
Small deflections can generally be described by the Euler-Bernoulli equation [8]:  
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5 Assuming the membrane is rectangular in all these cases. 
6 Generally one speaks of a beam when its length L is considerably larger than its width b: L > 5b. 
To be more to the point, a beam is by definition a one-dimensional problem, where the deflection 
w(x) depends on a single coordinate; unlike plates or diaphragms, which deflection w(x,y) depends 
on two coordinates. 
7 Load, also known as distributed force, is measured in Newton per meter. 
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Here E is the plate modulus, which is equal to Young’s modulus Y modified by a factor 
containing Poisson’s ratio8 ν via E = Y / (1 – ν2). I is the area moment of inertia9. For a 
rectangle, I is given by bh3/12. The product EI is known as flexural rigidity and is a 
measure of the beam’s resistance against bending caused by transverse forces.  ρ is the 
mass density of the material involved; ρbh is hence a line mass density. Incidentally, EI = 
0 in Eq. (2.43) describes a vibrating string. In this context, we are merely interested in 
(quasi)statics, hence the kinetic term is set to zero: ∂²w/∂t² = 0. The partial differential 
equation reduces to an ordinary one. A further simplification is brought by the 
assumption that the flexural rigidity EI is constant over the length of the beam10, resulting 
in Eq. (2.44). 
 4 2

4 2
( )

d w d w
EI S P x

dx dx
− = . (2.44) 

 
Solving a concrete problem requires four additional boundary conditions, as Eq. (2.44) is 
a fourth order differential equation. The two most abundant boundary conditions are 
“clamped” (position w and angle (or slope; dw/dx) fixed; often zero, but not necessarily 
so), “free end” ( d2w/dx2 = 0: zero curvature, and d3w/dx3 = 0: zero shear stress). These 
boundary conditions are both present in the case of a cantilever: it has one clamped end 
and one free end. There are more types of boundary conditions, which we will not deal 
with further. Finally, it should be remarked that in many texts, a downward deflection is 
considered positive; as a consequence, also downward forces must be taken positive.  
 
 
2.2.2 Electric load 
 
The situation focused on in this section is a clamped-clamped beam of length L, which in 
our case has the most natural conditions w = 0 and dw/dx = 0 at its two ends. This 
specific subsection aims at attaining some more insight in the problem at hand. 
Negligible tensile force (S = 0) is assumed, and a force on all points on the beam, to have 
the load function P(x) continuous along the whole length of the beam. Later, a partial 
load will be considered. 
The simplest cases are point loads (concentrated forces), and constant loads. An example 
of the latter is a bridge bending under its own weight. In the current context, the effect of 
weight of a micromachined beam can in most cases be neglected11. We are interested in 
the electric force, caused by a voltage V between the fixed and the flexible electrodes 
(separated a distance z0 without actuation), see Fig. 2.6: 
 

 
 

                                                 
8 Poisson’s ratio, a material constant, accounts for the fact that a piece of material is slendered upon 
stretching. 
9 Alternatively called ‘second moment of inertia’. 
10 A counterexample is triangular cantilevers for atomic force microscopy, which are 
commercially available. Their area moment of area is a function of position. 
11 Downscaling from the household meter to a micrometer decreases volume (hence mass) with a 
factor 1018.  
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Fig. 2.6 Clamped-clamped beam under a distributed electric load. 

 
The electric force causes a load 
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This however makes the resulting differential equation Eq. (2.44) nonlinear. For low 
voltages, so that w << z0, it is a reasonable approximation to solve just the uniform-load 
equation 
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With boundary conditions 
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this problem has as explicit solution 
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As soon as the displacement function is known, a capacitance-voltage relation can be 
established by 
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in which the voltage dependence of the displacement has been made explicit. For Eq. 
(2.48), the integral Eq. (2.49) can be solved exactly in terms of arctangent functions, but a 
bit more illuminating is if we approximate: 
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in which A = bL is the total area. If we compare Eq. (2.50) to a parallel plate C(V)-
relation (Eqs. (2.11) and (2.12)), we could associate an equivalent stiffness  
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keqL3 = 720EI = 60Ebtm

3, with tm the thickness of the membrane. Different interpretations 
of stiffness are viable however, for example the ratio of the total electric force PL to the 
deflection of the center w(x = 0): Keff, as in subsection 2.2.4, which in this situation (Fig. 
2.6) would read KeffL3 = 384EI. Note that both are quite larger than the stiffness for a 
point-loaded beam (See Chapter 4, Eq. (4.7)).  

An enhancement in accuracy, especially at slightly higher voltages, is achieved if the load 
function Eq. (2.45) is linearized, so that the load at least retains a deflection-, or position-
dependent character. The solution to the resulting equation 
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reads:  
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For larger voltages, the predictions for bridge deflection are for the uniform and 
linearized load functions significantly different. Let P(n) be the nth order expansion of the 
load function around w = 0 and w0 ≡ w(P(0), x = 0) and w1 ≡ w(P(1), x = 0) the deflection 
of the central point of the beam for the ‘zeroth’ and first order load function expansions. 
The ratio w1/w0 is then set out in Fig. 2.7 for different voltages in order to visualize in 
when their difference (or ratio) becomes appreciable. The two approaches are compared 
for  parameters typical for structures in Chapter 3 (L = 300 µm, b = 1800 µm, z0 = 1 µm, 
h = 1 µm, Y = 69 GPa, ν = 0.35, E = 78.65 GPa). The upper limit voltage 3. V is in the 
order of estimated pull-in.12 

 
Fig. 2.7 Voltage dependence of w1/w0 at x = 0 

 
Deflection profiles of these two approximations are plotted together with a third in the 
next subsection (2.2.3). 
                                                 
12 At this moment, only rough guesses can be made for Vpull-in. Based on the parabolic coefficients 
of Eq. (2.50) and Eq. (2.15), Vpull-in would be 4.4 V for the given parameters. For k = Keff, and using 
Eq. (2.14) Vpull-in = 3.2 V. It is stressed however, that Eqs. (2.14) and (2.15) apply for a strict 
parallel plate MEMS only. For the case at hand, the parallel plate configuration is distorted during 
actuation. 
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2.2.3 Bridge instability 
 
The solutions Eqs. (2.48) and (2.52) both conceal important critical behavior of the 
bridge. As for the parallel plate configuration, cf. Eq. (2.12), a sufficiently high voltage 
will result in collapse of the bridge. 
The stressless (S = 0), electrostatically loaded beam equation 
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has no closed form solution with desired properties13. Instead, one can proceed by 
expanding the right-hand side of Eq. (2.54) around w = 0 by 
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Then, we insert for w(x) a power series 
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This has as a fourth derivative 
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The solution has to be symmetrical around x = 0, which leads us to drop the odd terms in 
Eqs. (2.56) and (2.57). Combining this with Eqs. (2.54) and (2.55) yields the relation 
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Note the expansion on the right-hand side is to the ith power. Equating like powers of x 
now yields expressions for the coefficients a4, a6, a8,… in terms of a0 (= w(0), the 
deflection of the central point) and a2. For x = 0 we have immediately 
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13 In fact, there exists a solution to this equation: 2 4813

0 040
( ) ( )w x z z x A= + ξ − , with A an arbitrary 

constant, but this function cannot come close to what is desired. Symmetry, w(x) = w(–x), requires 
A = 0, while the boundary condition w’(½L) = 0 requires A = ½L. The constriction w(½L) = 0 asks 
for a complex A, rendering the whole function complex. Last but not least, for zero voltage (ξ = 0), 
we get w = z0, where we would wish w = 0. 
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while equating quadratic and quartic terms in x gives: 
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For calculating a8 with Eq. (2.58), both i = 1 and i = 2 deliver terms. Here,  a4 can be 
eliminated by Eq. (2.59). Higher order terms become increasingly complicated. 
Calculations have to be done numerically then. At last, a0 and a2 are determined by the 
boundary conditions w(½L) = 0 and w’(½L) = 0. For demonstrating the instability of the 
bridge it suffices to determine the an until n = 6. Then, the boundary conditions dictate: 
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It follows that a0 has to satisfy 
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The maximum value of the left-hand side of  Eq. (2.63) occurs when the center of the 
bridge is lowered by one-third of the gap: a0,max = ⅓z0, which gives a maximum value of 

34
027

z . The right-hand side becomes maximal for a voltage corresponding 

with 41
02

( ) 60L zξ = , which counts in for a maximal value of 3 35 4
0 06 27

z z> . This 
demonstrates that for sufficiently high voltages, there are no real and physical solutions 
for Eq. (2.63), which signals the instability. According to this crude approximation up to 
6th power in x, pull-in thus occurs when the left-hand side is maximal. Remembering the 
second part of Eq. (2.46), we have then 
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Using the parameters mentioned in the previous subsection (2.2.2), the deflection patterns 
of the three thus far encountered approximations are compared in Fig. 2.8 for a voltage of 
3.30V, which according to Eq. (2.64) is at the verge of pull-in.  
The three methods differ for factors of up to 2 for the deflection of the center when close 
to pull-in. To get a feel of the quality of the latter approximation, the left-hand side of the 
differential equation Eq. (2.54), a quadratic function, has been divided by the right-hand 
side, as a function of x, Fig. 2.9. 
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Fig. 2.8 (Left) Stressless bridge deflection for V = 3.30V for a uniform load (upper, thin), 
linearized load (middle, half-thick) and nonlinearized load, 6th order approximation in x 
(lower, thick). 
Fig. 2.9 (Right) Left-hand side of Eq. (2.54) divided by right-hand side (“DRat”) as a 
function of position 
 
In the ideal case, this ratio “DRat” = w””(z0 – w)2/(ξz0

2) is unity everywhere. In the flank 
regions, the discrepancy is up to 30%, which is perhaps not too bad for describing the 
deflection profile so very close to a critical point (pull-in). The centre of the beam has 
automatically a unity DRat. This does not mean however, that the estimated value for the 
center deflection is exact: including more terms modifies Eq. (2.63), from which a0 is to 
be solved. Instead, a measure for the average discrepancy could be calculated by 
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2.2.4. Beam with partial load and tensile stress 
 
Now, consider a beam with a uniform partial load P0 and a tensile force S, see Fig. 2.10. 
This case has been described in [9], based on [10]. In surface micromachining this is 
important because film stress is a common phenomenon. Additionally, in surroundings 
with variable temperature, differences in thermal expansion coefficients make themselves  
felt. 

 
Fig. 2.10 Beam with partial electrostatic load and tensile stress 

 
The maximum deflection wmax of a clamped-clamped beam caused by a transverse load 
distributed centrally and symmetrically around its centre point follows the relation 
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with P0 a uniform force density and lc the length over which this force density is applied. 
The constant of proportionality linking deflection and applied transverse load Keff is  
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sought after. If the thickness of the beam is much smaller than its length, the stiffness Keff 
, taking into account axial forces, is well described by Eq. (2.65): 
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In here, L is the length of the beam and /r cl Lλ =  the portion of the beam that is 
subjected to the transverse load. k is defined as 
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S in (2.67) is the axial force, i.e. any force parallel to the beam attempting to stretch it. It 
is given by: 
 ( )NL otherS bh= σ + σ ,           0

ˆ
other Tσ = σ + σ . (2.68) 

 
Here b and h are the width and the thickness of the beam respectively. Three stress 
contributions are taken into account. Firstly, σNL is the axial stress resulting from beam 
stretching when the beam is (non-linearly) deflected in transverse direction. It is 
estimated by 2 2 2

max / 4NL Ew Lσ = π . Secondly, the fabrication of the beam may yield a 

residual film stress 0σ̂ = 0σ (1 – ν), with σ0 the biaxial stress. Its value is to be taken at a 
fixed temperature T0, for example room temperature. Thirdly at last, there is 
thermomechanical stress. In many cases, the bridge electrode and the substrate are 
composed of different materials, for example an aluminum bridge on a boron glass 
substrate.  Variations in temperature will try to expand or contract both parts in unequal 
amounts. As the boron glass substrate is very much thicker (500 µm) than the aluminum 
bridge (1 µm) and much wider also, the forces governing the wafer’s contraction 
dominate. The aluminum bridge has to fully comply to the stretching behavior of the 
glass.  This gives rise to considerable stress in the bridge if temperature variations are 
large. It is assumed that this thermomechanical stress σT is given by 
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In Eq. (2.67), ∆L is the distance the bridge is stretched or compressed compared to the 
length it would have attained if the bridge were allowed to contract or expand freely upon 
changes in temperature. L is the beam length at actual temperature T = T0. α1 and α2 are 
the linear thermal coefficients of top and bottom material. E applies for the aluminum 
bridge.  
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If the deflection of the beam is not greater than roughly its thickness, which condition is 
fulfilled for MEMS structures investigated here, Keff can be assumed independent on wmax 
and approximated by neglecting σNL. This results in: 
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For example, the non-linear bending stress σNL is for a maximal deflection of 100 nm in 
case of a L × b × h = 300 × 3600 × 1 µm3 membrane about 19 kPa, much smaller than 
typical residual film stresses, that are in the order of tens of megapascals. The 
applicability of Eq. (2.68) as an approximation is extra supported by that the first 
correction on Eq. (2.70) in the power expansion of Eq. (2.66) in wmax is quadratic, not 
linear, which term is zero.  
For negligible tensile stresses (the limit in which η approaches zero), Eq. (2.70) can be 
approximated further by: 
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How the stiffness depends on the load distribution is shown in Fig. 2.11 for a particular 
geometry. 
 

0.2 0.4 0.6 0.8 1
l

50

100

150

200

250

300
Keff HNêmL

50 100 150 200
s thermal
HMPaL

2

4

6

8

10

12

Keff
HkNêmL

 
 
Fig. 2.11 (left) Keff  vs. λr (= lc/L) for bLh = 3600 × 300 × 1 µm3 bridge for zero axial 
load. 
Fig. 2.12 (right) Keff  vs. σother for 3600 × 300 × 1 µm3 aluminum bridge on silicon with λr 
= 1/3. 
In case of 0rλ = , Eq.(2.72) reduces to 
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the familiar expression for the beam stiffness for a centralized point load. If stresses get 
very large, the term with η2cosh(η) will start to dominate the denominator in Eq. (2.70), 
which will result in Keff  linearly depending on the stress. Fig. 2.12 displays the 
dependence on the stress of the stiffness Keff, calculated with Eqs. (2.70) and (2.71). 
 
Fig, 2.12 clearly illustrates the abovementioned linear dependence of the stiffness on the 
stress and thus on the temperature variation.  
It is mentioned once again that the above analyses assumes the load P is uniform over the 
actuation area lc. As seen in subsection 2.2.2, more accuracy can be introduced by using a 
load linear in height. In Fig. 2.10, a load function as used in Eq. (2.51) applies at the 
beam section above the electrode. The general solution for the beam deflection at this 
actuation area reads:  
 1

021 2( ) cosh cosactw x A g x B g x z= + − . (2.74) 
 
At the flanks, P = 0 applies.  
 
 ( ) sinh( ) cosh( )nullw x C kx D kx Ex F= + + + ; (2.75) 
  
k , g1 and g2 are in this particular context defined as 
 
 2 2 4 41 1

2 2

2 2
1 2 4g k g k k a= + ≡ + + ,        /k S EI≡ . (2.76) 

 
Here, a is the voltage parameter as defined in subsection 2.2.2. The coefficients A, …, F 
are found by applying the boundary conditions wnull(x = ½L) = 0 and wnull’(x = ½L) = 0 
and furthermore demanding continuity of w(x) and its first, second and third derivative at 
the boundary of the actuation zone (x = ½lc). The very complicated form of these 
coefficients is not reproduced here. 
 
 
2.2.5 Flank-loaded beam 
 
A variation is how a beam deflects if it is loaded by two parallel strips width s that are not 
connected to each other; the middle region is unactuated, see Fig. 2.13. This is 
representative for the silicon nitride samples described in section 3.2. 
 
The simplest way is the following: Suppose a beam is loaded downwards with force 
density P0 over a distance lc. The trick is to further load the beam upwards with the same 
force density over the middle part of width lc – 2s. The overlap cancels and the two strips 
do the trick. Note that the effective stiffnesses are not similar in both cases for they 
depend on lc and lc – 2s respectively. In a formula: 
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Fig.2.13 Flank-loaded beam, approximated by a two-sided centrally loaded beam 

 
Also here applies: more precise is dividing the beam in actuated and unactuated regions 
and solving the beam equation for each of the regions. The solutions are then connected 
by applying proper constrictions. 
 
A few summarizing remarks: For an accurate description of MEMS structures with a 
flexible bridge electrode, like the ones that will be described in section 3.3, the parallel-
plate theory in section 2.1 should be replaced by beam deflection theory (see subsection 
2.2.1). Clamped-clamped beam theory is firstly applied for an electric load spanning the 
whole beam. Various approximations to this nonlinear load are compared (subsection 
2.2.2). Due to this nonlinearity, high voltages will result in unstable behavior for this 
bridge. An analytical estimate is made of this ‘pull-in voltage’ (subsection 2.2.3). To 
further accommodate to the experimental situation, axial stress is introduced. Variations 
in temperature are directly related to how they influence the beam stiffness. At last, the 
influence of partial loads (i.e. not spanning the entire beam length) is investigated. 
 
 
2.3 BUILT-IN VOLTAGE AND PARASITIC CHARGES 
 
Most of the in this thesis encountered capacitive MEMS, when characterized for bias 
voltage dependent characteristics (in particular capacitance), exhibit at least some offset 
with respect to the Vbias = 0 state. This offset, in many sources known as ‘built-in 
voltage’, ranges from less than 0.1 V up to several volts, depending on the design of the 
structure and the material composition. During experiments on the silicon nitride 
EMMA-samples (section 3.2), a few cases were encountered where smooth C(V)-curves 
(-40 < V < 40) were offset by more than 20 V. The first subsection (2.3.1) in the current 
section  will discuss a few important sources for a voltage offset. Subsection 2.3.2 sums 
the main types of parasitic charges encountered in a dielectric layer. Subsection 2.3.3 
mentions typical charge transport mechanisms that occur in dielectrics. Finally, 
subsection 2.3.4 summarizes the important points of this section. 
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2.3.1 Sources of built-in voltage 
 
Because of the omnipresence of small built-in voltages, C(V) – data have usually been fit 
with a quadratic expression allowing for this offset: 
 
 2

0( ) ( )biC V V V C= α − + , (2.78) 
 
where Vbi is the built-in, or offset voltage. Enlisted below are a few causes that can give 
rise to a built-in voltage. It is noted already that the 0.3 V amplitude, 800 kHz AC readout 
signal of the capacitance does not contribute to a built-in voltage; being far above 
resonance frequency (typically in the 1-10 kHz range), this means only the root-mean-
square (rms) value matters. Taking the time average of the total voltage over the 
capacitor Vtot over many oscillations of its ac-component VAC gives 
 

2 2 2 2( ) 2tot DC AC DC DC AC ACV V V V V V V= + = + + . 

 
As 0ACV = , we see that for VDC = V and 2 2

AC rmsV V≡  we are left with Eq. (2.79): 

 
 2 2

0( ) ( )rmsC V V V C= α + + , (2.79) 
 
in which we observe that the rms-voltage has the effect of adding a small, constant 
amount of 2

rmsVα  to the capacitance, rather than producing an offset in the voltage. 
 
1) Difference in work function. 
 
If the electrodes are of dissimilar materials, their difference in work-function (also known 
as surface potential; the energy required to remove an electron from the surface) will give 
rise to an offset in the voltage, as demonstrated for various material combinations by 
VTT. These offsets range typically from 0 to 1 V and are consequently a factor to reckon 
with in the design of sensitive capacitive MEMS structures, which have to operate 
accurately. The offset this produces is however constant in time and in many practical 
cases a constant offset is acceptable, as the structure can be calibrated for it. Except for 
the EMMA silicon nitride structures, the devices investigated in this thesis all have 
similar electrode materials (aluminum). 
 
2) Static parasitic charges 
 
In many occasions the electrodes are covered by a dielectric material, either on purpose 
(usually relative thick, intentionally grown layers of at least a few tens of nanometers), or 
‘by accident’ (usually the thin native oxide, for example 2-3 nm. Al2O3 covering all 
aluminum that has shortly been exposed to air). These dielectric layers provide sites 
(‘states’) in which charges (mostly electrons) get trapped. Those trapping states are most 
abundant at the surface, where the lattice of the dielectric is terminated and the 
unsatisfied bonds and many other defects are capable of hosting charges that either cross  
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the oxide or are caught from any alien material (gas, water, contamination) in contact 
with the exposed surface of the dielectric. Trapping states and transport will be more 
digressed on in subsection 2.3.2 and 2.3.3.  
Consider now a MEMS layer stack with a surface charge on one of the electrodes: 

 
Fig.2.14  Metal electrodes (far left and right) with dielectric layers (thicknesses d1 and 
dox, not necessarily equal) and a surface charge s  inside one of the layers, spaced s from 
the right electrode, put on a voltage V0  with respect to the left electrode (grounded).  
 
The electric field anywhere in the device can be calculated by solving the one 
dimensional Poisson equation Eq. (2.80): 
 2

2

0

d V

dx

ρ
= −

εε
, (2.80) 

 
The contribution to r due to the surface charge is represented by sd(z – zs). The field just 
above the surface of the left dielectric is then: 
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The force on the left side dielectric can be calculated with Maxwell’s stress tensor, which 
in this static, one dimensional case is simply 2

0 1½M M dT T E≡ = ε , where Maxwell’s initial 
has been attached to the tensor symbol to avoid confusion with different quantities that 
may be represented by T, such as temperature. This force is calculated to be 
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Here deff from Eq. (2.34) is recognizable. In Eq. (2.82), the substitution  

 
 

0

bi

s
V

σ
=
εε

 (2.83) 

 
has taken place. This expression Eq. (2.83) [11] has a typical dipole character, for s is 
(half) the distance of this charge to its oppositely charged image in the metal electrode. In  
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many cases, like in this thesis all MEMS structures provided with aluminum electrodes, 
this voltage is therefore quite small. However, in the case of silicon nitride samples 
(section 3.2), the dielectric layer thicknesses are comparable to the overall gap 
dimensions, when charge on the surface will have a noticeable effect due to Eq. (2.83). 
The dependence of the dielectric thickness does not mathematically appear in Eq. (2.83), 
but its importance is reflected in what upper limit is put on s. For a C(V)-curve, this force 
Eq. (2.82) means immediately that the minimum capacitance occurs not at V = 0 but 
instead at V = Vbi. The curvature α is also affected, although this effect is less noticeable. 
 
3) Non-uniform static parasitic charges 
 
The built-in voltages and parasitic forces mentioned so far hinge upon the uniformity of 
the parasitic surface charge density and above all that it is a continuous entity. Typical 
parasitic charge densities in sensory capacitive MEMS are in the range 10–3 – 10–7 C/m². 
At the top of this scale we find devices with thick dielectric layers, such as the silicon 
nitride bridge HF-sensor (section 3.2). In the lower range of this scale, only a few charges 
per square micron are equivalent to these charge densities. Consequently, the lateral 
variations (the spacing between the charges) are in the order of the vertical scale (the 
capacitive gap), namely ~ 1 µm. This ratio of dimensions marks the border of continuity, 
i.e. for closer spacings, the charges can be regarded as a continuous distribution, while if 
the charges are mutually more remote, effects of their discrete nature will start to prevail. 
Consequently, if charges are distributed in clusters, packing together several unit charges 
on practically a single location, the local field can be quite different from the case in 
which the same number of charges (same charge density) is spread more evenly over a 
surface. A study of single charge clusters by AFM is presented in Chapter 5 of this thesis. 
The following situation is of interest, though quite basic in principle. Assume a 
distribution of localized charge clusters in the form of a rectangular grid, Fig. 2.15: 
 

 
Fig. 2.15 Rectangular grid of identical charge clusters spaced Dx. The resulting electric 
field is probed at the position of the open circle (observer, test charge, Kelvin probe, etc), 
above the center of a square of four charge clusters. 
 
The calculations for the electric field 1 µm above a grid of various charge cluster 
spacings, but constant charge density, are shown in Fig. 2.16. It is seen that if the charge 
clusters are spaced equal to the distance above which the field is probed, the discrete 
cluster distribution can just be considered ‘continuous’. For larger spacings, the local 
field subsides. Obviously, the reverse is true if the local field is probed right above a 
charge cluster. With larger spacings, the number of charges per cluster grows in these 
calculations, to keep the average surface charge density constant. The field grows 
likewise. However, also in this case the transition to the continuous regime occurs at  
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Fig.2.16 Electric field of a charge density of 1.6ÿ10-5 C/m² (100 unit charges per µm²) as 
a function of its distribution into clusters spaced 0.1 – 10 µm apart, containing 1 to 104  
unit charges; The field is probed at the position indicated in Fig.2.15, 1 µm above the 
grid. The sample measured 2x2 mm², containing 400 to 4ÿ108 clusters. The solid line 
indicates the field of a continuous surface charge s/2ε0. 
 
spacings equal to the vertical observation distance. For closer spacings, the cluster size 
ceases to be of importance, neither the observation distance. 
A perhaps surprising effect is that even if the net amount of parasitic charge is zero, a 
nonuniform distribution of charges is capable of producing parasitic forces. A simple 
schematic (Fig. 2.17) is given to clarify this: 

 
Fig.17 Capacitive MEMS with a dielectric layer, for clarity cut into two separate regions, 
with bipolar parasitic charging.  
 
Both charged regions cause an attractive force on the top electrode, regardless their 
polarity. This force is present also with zero bias voltage, and with net zero charge ( Q+ + 
Q– = 0 ). An expression for the resulting force is given in [12], based on [13]: 
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. (2.84) 

Here biV  the mean built-in voltage (averaged over a lateral position dependent built-in 
voltage).  
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varVbi is the variance14 of the built-in voltage. d and ε are thickness and dielectric constant 
of the dielectric layer and g the gap between top electrode and the surface of the dielectric 
layer (= z – d in many expressions in this thesis).It is remarked that for a nonzero 
variance, the built-in voltage can not be compensated by a bias voltage V, such that the 
electrostatic charge is force out, even though the net charge is zero. 
 
4) Mobile charges 
  
Until now only static features have been considered. Meanwhile, the measurement of a 
C(V) relation is a dynamic, time-extended process, in which ideally only the position of 
the movable electrode varies, as a function of bias voltage that is tuned (linearly) in time. 
However, during the process, various parameters may change. At first, the static 
capacitance may change significantly during the process of a single curve measurement, 
because of drift in the electronics or mechanical drift. Fitting the data with a quadratic 
function will produce a (small) offset in the voltage, as is demonstrated in a simulation in 
subsection 3.2.4.  
In this context, we consider what can happen if the amount and location of trapped 
charges in the dielectric layers is varying. In the first place, the average total trapped 
charge can drift slowly, on timescales of several curves up to many curves. Furthermore, 
within the duration of a single curve measurement, significant amounts of charge can trap 
and de-trap. 
For a rough sketch of the phenomena, a simple simulation has been carried out, in which 
charge is allowed to accumulate on the surfaces of thin dielectrics through ohmic 
conduction through the dielectric. This accumulation and de-cumulation happens during a 
series of C(V) curves with alternating bias voltage sweep directions. This kind of 
measurements is employed in practice as reported in Chapters 3 and 4. 
The device consists of two parallel electrodes (for example aluminum) and a thin (native) 
aluminum oxide on top. Fig. 2.14 is a schematic, with d1 = dox = s = 2 nm and a rest gap 
z0 = 1 µm. For the dielectric constant ε = 9.1 and the spring constant k = 500 N/m have 
been taken. These values constitute a representative capacitive MEMS device. The 
assumed resistivity ρ = 1010 Wm is lower than reported values (1012 – 1014 Wm) in order 
to enhance the effects intended to demonstrate. Two reasons justify this kind of 
modification:  
1) The thin film dielectric constant is expected to be lower than the bulk dielectric 
constant. Therefore, the field that trapped charges experience is less attenuated. The 
decreased resistivity compensates for the too high value of 9.1.  
2) The dominant transport mechanism in films this thin is direct tunneling from the metal 
to the surface, not ohmic conduction. In a measurement, considerably more charge will 
accumulate on the surface than can be expected from ohmic conduction alone. 
In the simulation presented here, zero initial trapped charge is assumed. Furthermore, it is 
assumed that all charge accumulates on the surface only. When a curve is measured, it is 
divided in time steps, corresponding to voltage increments. During a time step, a current 
density J flows through the dielectric, which causes charge to pile up on the surface. The 
trapped charge increment ∆σ during a time step ∆t is calculated by Eq.(2.86): 

                                                 
14 The common notation for variance, s2, has been abandoned to avoid confusion with surface 
charge density 
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J t E t∆σ = ∆ = ∆
ρ

. (2.85) 

 
Two contributions have been taken into account for the electric field E a trapped charge 
in the dielectric experiences: The bias voltage (attracting charge towards the surface), and 
the trapped charge on the surface (repelling ‘new’ charge back and causing outflow of 
charge in absence of bias voltage). A result is shown in Figs. 2.18ab: 
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Fig. 2 18a (Left).  Simulation of built-in voltage vs. time (alternating sweep-directions), 
with mobile parasitic charges; initial surface charge is zero. One point represents the 
built-in voltage, taken from a quadratic fit to C(Vbias) data for –5 V < Vbias < 0 V. 
Fig. 2.18b (Right). The corresponding surface charge density 
 
Summarizing the results of these simulations learn: 

1) If the amount of parasitic charge changes significantly within one curve, a 
nonzero offset in the voltage is produced, even if initially no parasitic charge is 
present and even if the bias voltage range is symmetric around 0 (in Fig. 2.18 it 
is asymmetric).  

2) For sufficiently mobile charge, a curve running backwards immediately after the 
first forward curve produces an offset on a different location. 

3) The difference between forward offsets and backward offsets is constant in time. 
4) The offset voltages and the surface charge density oscillate around an average 

value that stabilizes after a certain time. 
5) Nonzero average values for offset voltage and surface charge result from 

asymmetric bias sweeps and net fixed initial charge 
6) A voltage offset from a single curve is not a reliable measure for the amount of 

parasitic charge. Instead, a series of alternating forward-and backward biased 
curves reveals any net permanent charge, which is represented by the level 
around which the voltage offset oscillates. This is a lower limit, which may 
represent the charge if all were concentrated on the surface of the dielectric, 
where its influence is strongest. It is conceivable that in fact more charge is 
present in the dielectric, but stored in the bulk, where its influence is partly 
shielded by the surrounding dielectric and the proximity of their counterpolar 
images in the neighboring conductor. 

7) A low spring constant tends to increase a voltage offset, as the device becomes 
more sensitive to forces resulting from parasitic charge.  
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The defects of the applied model are obvious and numerous: Firstly, though ohmic 
conduction does happen in dielectric layers, tunnel effects are much more important, of 
which a couple are mentioned in subsection 2.3.3. If the idea of an image charge is still 
applicable on the nanometer scale, it is clear that already a tunneling mechanism is 
necessary for a charge to enter the oxide, not only because of the natural barrier of the 
material interface, but also to ‘decouple’ a candidate parasitic charge from its image. 
After entering the oxide, the charge still needs to find his way to the surface, though its 
influence is already appreciable while still in the bulk of the oxide.  
Still, the simulations are quantitatively not at all doing badly; values for built-in voltage 
and splitting are in fact quite typical for what is observed in measurements of C(V) curves 
with symmetric bias. Much more importantly, they highlight qualitatively some important 
aspects that have qualitatively been observed in C(V) measurements presented in chapters 
3 and 4. They demonstrate the difficulty of associating a static concept like ‘built-in 
voltage’ to a dynamic and unstable quantity like ‘trapped charge’. Or, more precisely, 
assigning built-in voltage an instantaneous significance is valid, but a one-to-one 
association with the voltage-offset in a C(V)-curve is conceptually doubtful. From a 
single C(V)-curve it is therefore problematic to accurately estimate the amount of trapped 
charge.   
 
 
2.3.2 Types of trapped charges in dielectric layers [14] 
 
Charges that exist in a dielectric such as in a MEMS capacitor are of different nature, 
dependent on their origin. Generally, five groups of them have been distinguished in 
literature: a) surface charge, b) mobile ions, c) fixed dielectric charge, d) trapped bulk 
charge and e) trapped interface charge. They are depicted together in Fig. 2.19. 
 

 
Fig.2.19 various types of trapped charges 

 
The surface charge (a) on top of the dielectric can have many origins and is trapped by 
the impurities in the crystal lattice that are inherent to a surface. They can consist of 
holes, lattice imperfections, foreign atoms, etc. In the bulk material there can also be 
foreign, mobile ions (b) present that get there via imperfections in the fabrication process. 
Dedicated fabrication can reduce their number. The fixed dielectric charge (c) in the bulk 
of the dielectric can be present when the dielectric has been made by oxidation of the 
underlying electrode layer. It is located near the interface and are thought to originate 
from the quite abrupt ending of the oxidation process, when some ionized silicon atoms 
remain. The trapped bulk charge (d) sits firmly in lattice impurities of the dielectric. In 
the forbidden gap there are some states formed by the impurities, allowing a few charge  
carriers to enter the dielectric. The trapped interface charge (e) finally does not influence  
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the capacitor’s behavior if the underlying electrode is a metal or highly doped  
semiconductor, for it then induces charges there so that the plate is an equipotential at a 
value that is brought about by the external voltage source. 
 
 
2.3.3 Charge transport 
 
As stated earlier, charge trapping starts to form a problem for accurate MEMS operation 
by being unstable, i.e. during operation a particular configuration of trapped charges 
throughout the device changes, which crosses the possibility of calibrating a device to 
include a (stable) parasitic electrostatic force. In order to create this instability, charges 
have to move throughout the dielectric. Many studies have been performed on Metal-
Insulator-Semiconductor (MIS) – structures, more specifically MOS (O = Oxide). A few 
notable mechanisms that have been identified are mentioned below. Not all mechanisms 
as described here are immediately applicable, as a MEMS structure categorizes as a 
MAIS or MAIM (Metal – Air – Insulator – Semiconductor / Metal) stack, rather than 
MIS. If charges are transported from the conductor below the dielectric through the 
oxide, they end up in surface trap states rather than a metal. This has consequences for 
barrier heights and tunnel probabilities. The mechanisms themselves remain valid though. 
 
Ohmic conduction 
 
The most important difference between a semiconductor and an insulator is the width of 
the forbidden gap. For typical semiconductors like (undoped) silicon, the gap is in the 
order of 1 eV. At room temperature, a small but significant number of charges are excited 
from the valence band into the conduction band. For insulators, this band gap is at least 
several electron volts, which means a sharp decline in the number of available charge 
carriers. Though insulators do allow for tiny ohmic conduction (r > 1012 Wm for Al2O3), 
it claims only little terrain in the field of charge transport through insulators. 
 
Schottky effect 
 
The Schottky effect is one of the mechanisms describing the transition of the barrier 
between a metal and a semiconductor. It is based on the process of thermionic emission 
of charge carriers from the semiconductor into the metal or reversed. When a metal and a 
semiconductor are connected, band bending raises a barrier between the metal and the 
conduction band of the semiconductor. At sufficiently high temperatures (room 
temperature), some charge carriers (electrons for n-type semiconductors) possess the 
energy required to take the hurdle, which produces a current. In equilibrium, the forward 
current (forward as defined from semiconductor to metal) and the reverse current are 
equally large. A bias voltage lets one of the currents dominate, as an asymmetry arises in 
how high the barrier is perceived by the charge carriers on either side. In case of a 
forward bias, the Schottky current is given by 
 
 ( )/2 / 1Bn Be k T eV kT

RJ A T e e− φ= − , (2.86) 
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according to [15]. Here AR denotes the Richardson constant, which depends on the 
effective mass of the dominant carrier type. T is the temperature in K, fBn represents the 
barrier height, kB = 1.38ÿ10–23 J/K is Boltzmann’s constant, e is the unit charge and V is 
the forward bias voltage. At room temperature, kT ~ 0.026 eV, so that for 1 V the ‘–1’ 
term can be neglected. For conductivity through an oxide layer (rather than a M/S-
barrier), other sources [16] provide for the Schottky current the following expression: 
 
 ( ) /2 Sc Bn BE e k T

RJ A T e β − φ= . (2.87) 

 
Here, E is the electric field in the oxide. bSc is known as the Schottky field attenuation 
factor, given by 
 3

04Sc

e
β ≡

πεε
, (2.88) 

 
with ε the relative dielectric constant of the oxide.  
 
Poole – Frenkel Transport 
 
Closely related to Schottky conduction is Poole-Frenkel [17] conduction, see also [16]. 
This mechanism applies in oxide layers containing deep traps in the forbidden gap of the 
oxide, specifically for traps that are positively charged when empty and neutral when 
filled. Thermal excitation alone is not sufficient to excite a significant population of 
electrons to the conduction band, for the coulomb barrier, preventing the electron to be 
separated from the trap, is too high. However, a low electric field (typically 107 V/m, 
often written as 105 V/cm) lowers this coulomb barrier, so that the electrons can indeed 
be excited. The current due to Poole-Frenkel transport is very similar to Eq. (2.87):  
 
 ( ) /

0
PF PF BE e k TJ J e β − φ= . (2.89) 

 
Here, J0 is the low-field current (ohmic, so proportional to E) of the oxide, fPF  is the 
depth of the traps and the Poole-Frenkel field attenuation factor is simply given by bPF = 
2bSc. Because the charges drift along ohmic transport, Poole-Frenkel transport will likely 
be dominated by different mechanisms in case of for insulators with very high resistivity 
such as Al2O3. 
 
Direct tunneling 
 
When a metal or a semiconductor is covered with a very thin dielectric such as its native 
oxide (typically 2-3 nm), charge carriers can tunnel from the (semi)conductor, through 
the barrier layer to the surface, and back. In equilibrium, the forward and backward 
tunnel currents balance. 
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Fig. 2.20 Direct tunneling 

 
This has however the effect that some net amount of charge will be permanently stored 
on the surface: negative for metals and n-type semiconductors and positive for p-type 
semiconductors [18].  
 
Field emission: Fowler-Nordheim Tunneling 
 

 
Fig.2. 21 Fowler-Nordheim tunneling 

 
The theory of Field emission (FE) was first accurately described by Sir Ralph Fowler and 
Lothar Wolfgang Nordheim in 1928 [19]. It deals with the phenomenon of electrons 
being ejected from metal into vacuum, or into different media such as air and solid 
materials connected to the metal surface. The process is essentially different from 
thermionic emission, for here the electrons have to be excavated all the way from the 
Fermi level to the energy of the work function (in case of emission into vacuum) or 
barrier height (into any medium). A strong electric field (typically 108 V/m) is capable of 
doing so. Unlike thermionic emission, Fowler Nordheim transport is essentially a pure 
tunnel effect, capable of sending electrons right through an oxide (in [19], up to 13 nm 
has been studied) to an opposing metal or semiconductor. Furthermore, FN-tunneling is 
also present at cryogenic temperatures. In fact, the theoretical temperature dependence is 
essentially negligible between 0K and room temperature. In its original and simplest 
appearance, the Fowler-Nordheim current is described by: 
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f is the barrier height. The electron mass is recognized in m and finally Planck’s constant 
h and / 2h≡ π   are seen. Characteristic for Fowler-Nordheim tunneling is the strong 
dependence on the electric field E, which appears quadratically in the front factor and in 
the exponential as well. Note also the dependence on the barrier height.  
An important modification arises if the image force of the electron in the oxide is taken 
into account, which attracts the electron towards the surface and lowers the barrier. The 
interested reader is referred to [20]. A second modification is encompassing temperature 
dependence. At nonzero temperatures, some electrons acquire energies above the Fermi 
level. Up to room temperature, this effect enhances the current by typically a few per cent 
only. 
 
Hopping conduction 

 
Fig. 2.22 Hopping conduction 

 
Especially for thicker oxides, this mechanism is the main means of carrier transport 
through the bulk dielectric. Traps spread throughout the material, energies in the oxide 
forbidden gap, form ‘stepping stones’ for the charge carriers between which they move 
through tunneling. Mott [21] developed “Variable Range Hopping” to describe the 
dynamics of charge carriers in a bulk dielectric with traps. With “Range” the ‘four-vector 
distance’ Norm[(Dx, Dy, Dz, Df)] is indicated. The space coordinate distance and the 
difference in trap depth energy from one trap to neighboring traps are treated on equal 
footing. For pure amorphous dielectrics, these quantities are theoretically independent. 
The temperature dependence of hopping conductivity S15 depends on the the number of 
dimensions Nd in which the system is studied: 
 1

1

0( / )
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NdT TS S e
+

−= . (2.91) 

 
For one-dimensional transport (along a wire), Nd = 1. Sheet transport gives Nd = 2, while 
volume currents, as in the case of bulk transport through dielectric layers, are 
characterized by Nd = 3. 
 

                                                 
15 The commom symbol for conductivity s is avoided here in a context dealing with surface 
charges. 
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2.3.4 Summary 
 
Various sources of the offset voltage of a C(V)-curve have been mentioned: difference in 
work function, static parasitic charges, non-uniform parasitic charges, capacitance drift 
and mobile charges. It is well-founded to associate the concept of ‘built-in voltage’ with 
the first three (static) contributions. The latter two (dynamic), most notably the mobile 
charges, do not lend themselves readily to the static concept of a built-in voltage. The 
voltage-offset of a single C(V)-curve does generally not constitute a reliable value for the 
built-in voltage. Under stable operating conditions, alternately directed sweep series will 
split the built-in levels. When stabilized, their average does provide a workable value. 
Static trapped charges contribute to the built-in voltage in three ways, in order of 
importance: 1) interaction with charges on the opposite side of the capacitive gap, 2) with 
the electric bias field 3) by polarization of the opposing dielectric layer and interaction 
with it. 
Trapped charge can be of varying nature and origin. Their abundance depends on the 
design of the device and used materials, and the fabrication process, in which are of 
influence on the number and depth of traps. The surface of a dielectric layer is an 
especially attractive region for trapped charge, as here the lattice is terminated and 
‘imperfections’ are hence amply abound. However, especially amorphous materials also 
contain many bulk traps. 
Of the mentioned mechanisms that transport charge to / through an insulating layer, direct 
tunneling for native oxides (section 3.3, chapter 4) and hopping conduction for thicker 
dielectrics (section 3.2, section 5.3) are on general physical grounds regarded as the 
leading processes for charging and discharging (sections refer to experimental situations, 
described in this thesis, to which they apply). In both cases, the electric field biases the 
charging of the surface. Ohmic conduction, Shottky and Poole Frenkel cannot be 
excluded to play a role however for slow variations in the built-in voltage. Fowler-
Nordheim tunneling should be of minor importance, as because of the air gap (not present 
in MIS-structures), only a fraction of the total applied voltage spanning the oxide, and 
with it the electric field, while Fowler Nordheim tunneling starts to join the table only for 
high electric fields. 
 
 
2.4 ELECTROMECHANICAL RESONANCE 
 
Chapter 4 contains experiments of determining the (fundamental) resonance frequency of 
capacitive MEMS samples. This analysis serves the mechanical characterization of these 
samples, in particular the spring constant, which tells something about the sensitivity of 
the device. This has been done by electrostatic excitation of a mechanical vibration and 
the electronic readout of its response. It entails that a connection has to be laid between 
the electrostatic and the mechanical domain. Note that the term “electrostatic” is used to 
stress that the actuation is performed by voltage control: the applied force is due to static 
charge distributions. On the other hand, current control is associated with 
“electrodynamic”: the applied force (magnetic) is due to moving charges (currents). 
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2.4.1 Equivalent circuits 
 
In this subsection a simple and intuitive description of the electomechanical coupling will 
be provided. A rigorous treatment can be found in [22], in terms of the so-called “one-
port desription”, which covers  the response of a resonator to an applied signal. The 
device under test (DUT) is characterized by a finite set of “state variables” qi and 
communicated with through “ports”. The communication through such a port is described 
by a pair of port variables, called “effort” (e) and “flow” (f). The “effort” is the signal the 
experimentalist applies to the DUT, which meets a response that is related to the effort. 
This response, or flow f, is defined as the rate at which the state of the DUT, at which the 
effort is aimed, is changing; in short, the time derivative dqi/dt. We will consider here 
only the one-port description. Resonant behavior may be alternatively probed using a 
two-port description, which involves determining transfer functions of the system. 
 
Let us first consider a driven mass-spring system with viscous damping16 (Fig. 2.23), 
which motion is governed by (Eq. 2.92): 

 
Fig. 2.23 Oscillator of mass m and stiffness K driven by a force Fdrive,, counteracted by a 
damping force FD, added to which a spring force Fk that attempts to pull the bridge back 
into equilibrium. 
 
 2

02

( ) ( )
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d z t dz t
m K z z t D F t

dt dt
= − − − + . (2.92) 

 
Gravity is neglected here, although in some sensitive designs it should be taken into 
account. It would merely shift the equilibrium position, but if this is unwanted the sensor 
should be tilted so that gravity does not act in the sensitive direction (in Fig. 2.23 normal 
to the plate), or be equipped with a compensation mechanism (in which case the stiffness 
may be affected). 
Here, z(t) is the deflection of a harmonically suspended mass m with respect to its 
equilibrium position z = 0 and can be regarded as the relevant state variable of this 
system. The driving force F is the effort the experimentalist puts into the system. The 
spring, with stiffness K, attempts to affect the state of the system such that equilibrium is 
restored. The motion is damped with a constant D and is always opposed to the velocity;  

                                                 
16 Other damping mechanisms are not considered here, such as drag force, which is proportional to 
the square of the velocity. 
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in other words, it invariably counteracts the flow. What is left from the driving force is 
the net rate at which the flow is increasing, or the acceleration. 
In the special case without damping and driving force, upon sharp and short excitation 
the mass will oscillate at its free resonance angular frequency 
 
 

0

K

m
ω =        (D = F = 0). (2.93) 

 
Next we assume moderate viscous damping (under-damping), that is  
 
 0 2D mK< < . (2.94) 
 
For 2D mK≥ , the system is said to be critically damped (=) or over-damped (>), in 
which cases no oscillation takes place and the mass slowly and asymptotically returns to 
its equilibrium position. Under-damping affects harmonic motion firstly by causing the 
amplitude to exponentially decay in time and secondly by lowering the angular frequency 
of free resonance: 
 2 2

02
1

4 4D

K D D

m m Km
ω = − = ω − . (2.95) 

 
In case of the application of a sinusoidal force finally, the oscillator will ultimately 
assume a harmonic motion with a frequency imposed by the driver, for the motion at own 
resonance frequency will be damped out in the long run. The phase difference between 
force and motion and the amplitude will depend on the applied frequency. The amplitude 
will be maximal for a force driving at the damped resonance frequency ωD. 
Next, we consider a seemingly totally different problem, namely that of the description of 
an electric circuit containing in series the passive, linear elements resistor R, capacitor C 
and inductor L. The current through the circuit obeys: 
 
 

0
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t

t

dI t
L I t dt RI t V t

dt C
+ + =∫ . (2.96) 

 
For the purpose of assumed easier recognition it is chosen to write this equation in terms 
of the flow-variable, the electric current I, which is the time derivative of the state-
variable electric charge Q via I(t) = dQ(t)/dt. The effort variable V(t) distributes itself 
over the linear elements in the familiar way. When comparing the equations it is quickly 
recognized that the state variable (position and charge respectively) is influenced by 
similar time-dependencies. It lends itself in a natural way that the electric actuation and 
readout of a mechanical resonator can be descibed in pure electric terms, when apart from 
the state variables and their time derivatives, the following associations can be made: 
 
 L → m,       C → 1/K,       R → D (2.97) 
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These associations are not unique, but are the most natural ones, especially for a voltage-
driven experiment. Care must be taken that no ‘=’-sign is read here. The proper 
translation between the electric and the mechanical domain is taken care of by a (bias 
voltage dependent) transduction factor Γ, which can be derived from establishing the 
actual connections between the port variables in the electrostatic domain and the 
mechanical domain. Let us start with comparing the effort variable, in concreto: what 
force is actually acting on the movable electrode as a function of applied voltage. This 
voltage consists of an AC and a constant DC part: 
 
 ( )DC ACV V V t= + ω . (2.98) 
 
This causes an electric force of magnitude: 
  
 

( )2 2

2
2 ( ) ( )

2el DC DC AC AC

A
F V V V t V t

z

ε
= + ω + ω . (2.99) 

 
The first term in this equation determines the position of the movable electrode z, which 
will constitute the equilibrium position around which the oscillatory motion takes place. 
The second term governs this actual harmonic motion at angular frequency ω. If the 
amplitude of the alternating voltage is much smaller than the applied bias voltage, the 
third term, driving the movable mass at 2ω, can be neglected in comparison with the 
former two. If we divide the force in a static and a motional part, 
 
 

el stat motF F F= + , (2.100) 
we identify 
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and, pulling through the aforementioned neglect of VAC with respect to VDC, 
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ε
ω ≈ ω = Γ ω . (2.102) 

 
The latter expression constitutes the driving force of the harmonic oscillation. The 
transduction factor  Γ, coupling the mechanical domain to the electrostatic domain, is 
then defined as 
 

0

2 DC

A
V

z

ε
Γ ≡ ,     [Γ] = C/m. (2.103) 

 
The flow variables can be connected by examining the current through the DUT. For this, 
we consider only the AC part of the current; the DC – part obviously very quickly dies 
out in time. The current IAC (flow) is the time derivative of the amount of charge QAC 
(state variable in the electrostatic domain) that is stored on either capacitive electrode. 
Performing the derivation 
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          ( ) ( )AC motI t I t≡ + , (2.104) 
 
we observe that part of the current IAC stems from the ordinary AC probing of a static 
capacitor and part Imot results from the motion of the suspended electrode that drives 
charges through the circuit. The dependence of the capacitance on the position of the top 
electrode has been made explicit. The time derivative of the DC voltage over the 
capacitor vanishes quickly; for typical devices with a capacitance of a couple of pF and a 
typical internal source resistance of 50 Ω, saturation is reached in less than nanosecond. 
If we unravel the motional current a bit further and again neglect the AC-component of 
the applied voltage (V(t) ≈ VDC), we get: 
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ε
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The relation of the electrostatic flow variable I to the mechanical flow variable v = dz/dt 
has now been established. By inserting F(t) = Fmot(t) = ΓVAC(ωt) and dz/dt = Imot(t)/Γ into 
Eq. (2.92), we can further concretize the associations Eq. (2.97), arriving at: 
 
   L = m/Γ2       C = Γ2/K       R = D/Γ2. (2.106) 
 
The electric treatment of the mechanical resonance behavior of the DUT can be thought 
according to the following schematic (Fig. 2.24), known as equivalent circuit: 
 

 
Fig. 2.24 Schematic of equivalent circuit. 

 
Here CM denotes the static MEMS capacitance, which is dependent on the bias voltage. 
Note that this circuit applies only at the fundamental resonance mode, and contributions 
of higher order resonances are assumed negligible. Higher resonance modes can be 
incorporated by adding appropriate RLC branches in parallel to the first one, which are 
usually much more impedant than the first mode. 
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It is convenient to consider the admittance Y(iω) = I(iω) / V(iω) of the system, rather than 
the impedance Z.  Starting from the total impedance of the parallel circuit (in which  
Zc = 1/iωC, ZL = iωL and ZR = R), the admittance Y = 1 / Z comes out at: 
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, (2.107) 

in which 
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 (2.108) 

 
represents the second order frequency response function. In here, 
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are the series resonance frequency and the quality factor associated to this resonance. 
This topic will be returned to in the next subsection. 
 
 
2.4.2 Characteristic frequencies and parameters 
 
In this subsection important characteristics of the near-resonance behavior of the 
admittance will be discussed and how mechanical characteristics can be extracted from 
them. In an electromechanically coupled resonator, several characteristic frequencies can 
be distinguished. Firstly, there is the angular frequency ωs that minimizes the impedance 
of the motional part (hence called series resonance frequency), or equivalently that 
maximizes the conductance G, the real part of the total admittance: 
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so that 
 1

s
LC

ω = , (2.111) 

and the peak height χ of the resonance becomes: 
 

( ) 1
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R
χ = ω = . (2.112) 

 
The width of the peak ∆ω is defined as the spacing between the frequencies at which the 
conductance is half of its peak height. Solving for G(ω) = (2R)–1 yields four solutions for 
ω. The two positive angular frequencies are given by 
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so that 
 R

L+ −∆ω ≡ ω − ω =  . (2.114) 

The quality factor of a resonance is defined as the 2π times the ratio of the energy 
dissipation in one oscillation period to the total energy in an oscillation. A good estimate 
to this is provided by 
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= =
ω

, (2.115) 

 
which is what is already encountered in Eq. (2.109). 
Of interest is also the parallel resonance frequency, which  is defined as the frequency 
that establishes constant charge at the terminals, i.e. (almost) no current is running in 
response to an oscillating voltage. It lies very close to the frequency that minimizes the 
absolute total admittance. It can be calculated by neglecting R2  with respect to ωL, which 
is satisfied when sω ≅ ω  (near-resonance) and 1

s
Q >> . Then it follows from 

2 / 0( ) 0R L
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d ω →ω =
ω
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In the complex plane the locus of the admittance sweeps out a circle near resonance 
angular frequency, provided that the damping coefficient is independent of frequency so 
that R is a constant (otherwise the circle would become flattened). The resonant behavior 
for a low Q and a high Q resonator are provided in Figures 2.25, with parameters 
identical to the examples provided in [22] that are chosen such that a couple of 
characteristics of near-resonant behavior of a capacitive MEMS is well illustrated. 
We observe that the radius of the circle is proportional to the inverse of the resistance R 
and thus, L and C kept constant (corresponding to identical mass and spring constant, 
implying identical resonators), proportional to the quality factor Q. Furthermore we 
observe that for high quality factors the resonance circle can intersect the real axis. 
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Fig. 2.25: Low-Q (Q = 20, left) and high-Q (Q = 225, right) locus plots of the near-
resonance admittance for CM/C = 100. The scale of conductance G and susceptance B is 
in units of 0 s MB C≡ ω . Arrows indicate the direction of increasing  frequency. The series 
resonances ωs are drawn on their exact spots, while for the high-Q plot the parallel 
resonance angular frequency ωp is constructed very near to its actual location. Note the 
difference in scales between the two plots. Admittance points for successive fixed steps in 
frequency start densely packed around the origin and become more and more dilute near 
resonance, after which the point density quickly increases as soon as the ‘circle’ is left. 
  
If the parameters R, L and C can be determined, information about the mass17 and the 
stiffness can be retrieved. We may for example invoke the conductance, see Fig. 2.26: 

 
Fig. 2.26 Conductance for a resonator with CM/C = 100 and Q = 20; for R, C and L the 
arbitrary choices R = 5, L = 104 and C = 1 have been made. ωs, ∆ω and χ are specified 
by Eqs. (2.111), (2.114) and (2.112) 
 
                                                 
17 When the mass (density times volume) of the suspension can be neglected with respect to the 
resonating object, such as the double beam structures described in Chapter 4, the concept of mass 
does not present any difficulty or ambiguity. In case of resonating clamped-clamped beams and 
cantilevers, the inertial mass associated with resonance (“generalized mass”), though well-defined, 
may differ from the gravitational mass of the total structure. 
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A collection of data points will need a parameter fit for G(ω) . This can be a cumbersome 
task, as the involved parameters can attain large ranges of values and additionally very 
unnatural compared to typical values of components used in electronics. Especially far 
from ‘household practice’ are values for a typical motional inductance L. In Chapter 4 L 
= 200 kH (kilo-Henry) is reported, while dedicated resonators with high quality factors 
can easily reach several MH 
Providing useful starting values for the parameter fit can become problematic. 
Knowledge of the transduction factor Γ and approximate values for m and K may solve 
this problem, but we are more readily served if we rearrange a bit in the expression for 
the conductance: 
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which, using Eqs. (2.111), (2.112), (2.114), can be written in terms of parameters that can 
easily be estimated from a plot of data points, in the approximation of angular frequency 
close to resonance (ω ≈ ωs = (LC)–1/2): 
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Note the factor 4 in Eq. (2.118), resulting from quadratic expansion of the factor 
containing ω. Now, according to the relations Eq. (2.106), damping, mass and stiffness 
follow from the data and the coupling factor in the following manner: 
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In this thesis (Chapter 4), mainly the latter relation of these three will be found of interest. 
 
 
2.4.3 Influence of bias voltage 
 
The bias voltage plays a crucial part in the analysis of resonant behavior of MEMS 
resonators. In the first place, it determines how mass, stiffness and damping are to be 
translated in the equivalent lumped elements L, C and R through the transduction factor 
Γ, and is essential for the coupling between the electric and mechanical domain.  
Secondly, it is easy to understand that tuning the bias voltage will affect the parallel 
resonance frequency through 
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in which the static MEMS capacitance CM  is obviously dependent on the bias voltage. 
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More concealed, but more pronounced in effect, is the fact that also the series resonance  
 
 

s

K

m
ω =  (2.121) 

 
varies with bias voltage. The reason is that the stiffness K does not represent the intrinsic 
spring constant of the device, but rather the electromechanical stiffness as defined in 
(2.18) and (2.19), which is importantly affected by the bias voltage. For increased voltage 
this series resonance frequency follows a negative trend. At last, if we combine Eq. 
(2.115) with relations Eq. (2.106), we observe that the transduction factor drops out in the 
quality factor: 
 1

Q mK
D

= , (2.122) 

 
which should obviously be the case as the quality factor is invariant in the electric and 
mechanical domains. However, it is precisely because of the characteristics of 
electromechanical stiffness that also the quality factor is dependent on bias voltage. 
 
2.4.4 Damping 
 
A detailed and thorough account of possible damping mechanisms is considered to be 
beyond this thesis’ scope. In a subsection (4.3.5) in a section (4.3) on experiments on 
resonances a few words are devoted to this topic. From damping mechanisms such as 
viscous damping (Fdamp ∂ v),squeezed film damping, turbulent drag (Fdamp ∂ v2) and 
energy losses via the springs, only the first two are thought of importance for the vacuum 
regime (10–4 – 60 mbar) in which the experiments have been carried out. 
 
 
2.5 CONSIDERED SIDE-EFFECTS 
 
This section deals with four effects that, on superficial reflection, could play a role in 
parallel plate capacitive MEMS. The first of these, non-parallelity of the electrodes, 
certainly needs consideration and is actually linked to an otherwise difficult-to-explain 
experimental case adopted in this thesis. The second, the Casimir-effect, is an exotic 
phenomenon in which considerable fundamental interest is taken. Programs have been set 
forward to employ capacitive MEMS in this field of research. For the structures 
encountered in this thesis however, the Casimir force is far too weak to play any role of 
importance. The third subsection touches coarsely the phenomenon of fringe fields 
present at the boundary of a parallel plate capacitor. For various aspect ratios the force is 
calculated with Finite Element Modeling and compared with standard theory. The last 
subsection very briefly considers the breakdown of air. Typical electric fields in 
capacitive MEMS in this thesis can be several MV/m, sufficiently high to generate air 
discharges. Nevertheless, because of the proximity of the electrodes they are not expected 
to occur even in experiments under ambient conditions. 
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2.5.1 Non-parallel electrodes 
 
The theory encountered so far has mainly been concerning the ideal situation of a 
uniform capacitive gap, i.e. the spacing between the electrodes is constant everywhere 
within the capacitive area. For many practical cases this assumption provides a 
reasonable till good relation between gap and capacitance (in which one might speak of 
an ‘effective’ gap). An already encountered situation in which this assumption has 
released is the clamped-clamped beam electrode, where the actuating bottom electrode 
runs underneath a considerable portion of the span of the bridge electrode, so that the gap 
cannot be considered uniform. In this subsection the focus will be on plain electrodes 
(unlike the curved clamped-clamped beam), that are not exactly parallel. In subsection 
4.3.3 a case is encountered in which the non-parallelity of the electrodes might provide an 
explanation for a disparity between capacitance and curvature of the C(V)-relation. While 
a parallel capacitance might clarify a curvature lagging behind on what could be expected 
on the basis of an observed capacitance, non-parallel electrodes could make the device 
more sensitive than what is to be expected from a certain capacitance value. 
 
Let us consider a two-plate capacitor with capacitive area A = wl  (l = b – a) with 
minimal and maximal spacing za and b respectively, see Fig. 2.27: 

 
Fig. 2.27 Two-plate capacitor with non-parallel electrodes 

 
In the following the assumption is made that the slope angle of the top electrode is so 
small (in practice not more than a few arc minutes) that the resulting  decrease in 
capacitive area can be neglected.  The capacitance of this structure is given by: 
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where zeq stands for “equivalent gap”, the spacing between the electrodes of a parallel 
plate capacitor having the same capacitance. The limit zb → za  (parallel plates) is a useful 
check. One thing to note from (2.123) is that it is not so much the slope angle  
f = arctan[(zb – za)/l] that determines the capacitance, but ratio and difference of the 
minimum and maximum separation. Consequently, the top electrodes in Fig. 2.28, both 
of area A, would give rise to identical capacitances. 
It is seen further that if a rectangular top electrode is allowed to rotate about two axes 
intersecting in the centre (Fig. 2.29), the capacitance will be a minimum when top and 
bottom electrodes are parallel. 
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Fig. 2.28 Two sloped electrodes giving                        Fig. 2.29 rotation axes top 
 identical capacitances                                          electrode for parallellization 
 
This is in fact a well-known procedure for parallelization of two plates and has been 
applied in for example [23] in which an experiment is described to measure the Casimir 
force using capacitive MEMS. 
A potential difference between the plates pulls the top electrode down with a force 
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It is not difficult to show that 2

eq a bz z z≥  (equal if za = zb). Consequently, the force in Eq. 

(2.124)  is larger for a capacitor with a tilted plate than for a parallel plate capacitor. In 
order to proceed to C(V) – characteristics, one needs to specify how the suspension 
(stiffness k) of the top electrode responds to the distribution of the force over the top 
electrode. Three cases will be compared. I) Parallel plate capacitor, II) Constant slope III) 
Free rotation. 
 

I) Parallel plate capacitor. 
 
This case has been discussed in section 2.1 of this chapter. For completeness it is 
recapitulated: 
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II) Constant slope (or completely suppressed rotation) 

 
In this case it is assumed that the suspension is constructed such that the slope angle, or 
the difference ∆z = zb – za, remains constant during pulling down of the bridge. Assuming 
that the deflection of the leading edge of the top electrode is small compared to the gap, 
we find 
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Here za0 is the initial position of the lower edge of the plate. As expected from the force, 
the sloped curvature is larger than a parallel plate curvature αeq featuring the equivalent 
gap.  
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III) Free rotation 

 
Fig. 2.30 Free rotatable, tilted top electrode with endpoint suspensions. Arrows indicate 
the force distribution on the plate. 
 
The top electrode is assumed to be suspended on its end points on two identical springs, 
each with stiffness ½k (Fig. 2.30). Free rotation is possible at the points where the springs 
are attached to the plate. Of course many intermediate cases are conceivable, in which the 
pulled-down top electrode also has to work against torsion of the suspension. In fact, in 
II) the torsional resistance of the suspension is infinite. 
Now, the springs each have to balance a moment. The moment generated by the electric 
force about the rotation axis through x = a is given by 
 
 2

0
,

ln( / )1

( ) 2( )

x b
b a

el a

x a b a b b a

AlV z zdC
M x

z x z z z z z

=

=

ε
= = −

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ , (2.127) 

 
for which the spring at x = b has to compensate with a moment  
 
 

, 0½ ( )k a b bM kl z z= − − , (2.128) 
 
where the index of the moment refers to the rotation axis. The same relations apply 
mutadis mutandum to the rotation axis at b (in Eq. (2.127), replace the factor x in the 
integrand by l – x ). The spring in a has to compensate for a larger electric moment and 
will consequently stretch further. Applying a voltage will consequently increase the slope 
of the top electrode. An analytical, explicit C(V)-relation for this third case is quite 
complicated in its appearance and not thought of sufficient interest. Instead, the three 
cases are compared numerically in Fig. 2.31. 
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Fig. 2.31 Comparison of C(V) curves of I) parallel plate capacitor, II) constant sloped 
electrode III) free rotating sloped electrode. The parameters are chosen such that all 
initial capacitances are normalized on 1 and voltages to the pull-in voltage of the 
parallel plate capacitor. This means ε0A =1, z0 = 1 and k = 27/8. In cases II and III, the 
initial slope has been chosen such that zb = 2za, which dictates za = ln 2 to yield an initial 
equivalent gap of zeq = 1. Curvatures are increasing for ascending case numbers. 
Furthermore, we observe further that the pull-in voltage decreases for I, II and III 
respectively and likewise the critical capacitance at which pull-in is about to occur.  
 
Curvatures are ascending for the three respective cases. This demonstrates that for non-
parallel plates, the structure can be more sensitive than what would be expected from the 
initial capacitance. For two ratios of zb and za the curvatures are compared in Table 2.1 
normalized on the parallel plate curvature (αI = 0.149). 
 

 zb / za = 2 zb / za = 3 
αII / αI 1.081 1.221 
αIII / αI 1.141 1.376 

Table 2.1 curvature comparison, normalized on parallel plate curvature. For the two 
columns za= ln 2 ~ 0.69 and za = ½ ln 3 ~ 0.55 respectively. 
 
The gap ratios given here are large but not implausible for what can be expected for the 
structures encountered in this thesis. Wafer thickness and geometric curvature can vary in 
the order of a few µm over the sample distance (a frame with lateral dimensions of a few 
cm), so that tangents for electrodes measuring a few mm become in the order of 0.001. 
Furthermore, despite efforts to minimize dust in the sample, only one particle is needed to 
tilt the frame a bit after which the electrodes become disparallel. 
 
 
2.5.2 Casimir effect 
 
In 1948 it was recognized by Casimir that even in absence of obvious electro-magnetic 
fields, non-gravitational forces could exist. He predicted that two grounded conducting 
plates, held parallel to each other at a very small distance in vacuum, would nevertheless 
attract each other. This is as a result of the non-emptiness of the vacuum, which is an 
important prediction of all relevant quantum field theories. Between the plates, only a 
small class of bounded vacuum states is allowed, as the wave functions have to vanish at 
te surface of the plate. Outside there is no restriction whatsoever and the density of states  



2.5 Considered side-effects 

 59

 
there is much higher. This results in a pressure pushing the plates inward. The force as 
derived by Casimir is given by: 
 

4Cas Cas

A
F K

z
= − , (2.129) 

 
where the minus sign indicates the force to be attractive. A is the area of the plates and z 
their separation. The coefficient KCas is a numerical constant: 
 

271.30 10
480Cas

hc
K −π

≡ = ⋅ Nm², 

 
where h and c are Planck’s constant and the vacuum speed of light respectively. One of 
the most notable aspects of the Casimir force is the very rapid drop off of the magnitude 
with distance. The effect is very small and only noticeable when the plates are very close 
to each other, in the range of 1 µm, but preferably much lower. This places high demands 
on the experimentalist, especially to ensure a very well kept parallelity between the 
plates. Because of this point experiments with one of the plates replaced by a sphere have 
been carried out. However, in January 2002 the first successful measurements on the 
particular parallel plate configuration haven been published [23] where use was made of 
a vibrating cantilever. A feedback circuit ensured optimal parallelity by tilting the relative 
position of the plates such that capacitance was extremized for a given separation 
distance (in the range of 0.5 – 3 µm). For the Casimir coefficient a value of  
KCas = (1.22 ± 0.18) · 10–27 Nm² was found, in good agreement with the theoretical 
prediction. A remarkable example of a quantum phenomenon manifesting itself on the 
‘macroscopic’ level. 
Capacitive MEMS encountered in this thesis (especially those in Chapter 3), have sizes 
not very different from the above-mentioned device, which could also be counted an 
example of a capacitive MEMS. A sample calculation for a typical device of A = 1 mm² 
and z = 1 µm would experience a Casimir force of 1.3 nN. This is a factor of 3400 
smaller if a voltage of 1 Volt would be applied to the same device and even for typically 
encountered built-in voltages of 0.1 V the Casimir contribution would be unnoticeable. 
On the other hand, assume thin dielectrics of d = 2 nm and ε = 9.1 (Al2O3) and both 
electrodes grounded (V = 0). It would require a built-in voltage of only 0.017 V and a 
corresponding surface unit charge density of ne = Vbiεε0/2ed ~ 2100 µm–2 ( = 0.34 mC/m²) 
to create a force of magnitude similar to the Casimir force, which is a relatively low, but 
not uncommon charge density in the practice of capacitive MEMS, which underscores 
the necessity of accurately deal with trapped charges (prevention, removal or force 
compensation) if Casimir force measurements are being planned. 
If the MEMS device in the calculated example would have a spring constant of 100 N/m, 
the Casimir force would displace it over 13 pm, which results in an increase in 
capacitance (~ 0.1 fF) that is within the reach of accurate contemporary measurement 
systems. However, in the C(V) measurements performed here, the Casimir force is 
overshadowed by much more important contributions to the total force. 
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2.5.3 Fringe forces, charge distribution 
 
The electrostatic force on the top electrode of a parallel plate capacitor is usually 
calculated with Eq.(2.7), in which, depending on the context, V may be replaced by zs/ε0 
(z = gap, s = surface charge), or zQ/Aε0 with Q the total charge and A the capacitive 
surface. The derivation of this expression assumes a homogeneous electric field between 
the electrodes. At the edges however, the field lines are found to bulge outward (Fig. 
2.32) 

 
Fig. 2.32 Boundary field lines in a charged parallel plate capacitor 

 
The force between capacitive plates has been calculated by 3D Finite Element Modeling 
in COMSOL. The geometry consisted of a square plate capacitor of side L and thickness 
h = 1 µm, at a voltage ½V floating a distance ½z above an infinite grounded plane. The 
capacitance and force is then equivalent to a parallel plate capacitor at voltage V and gap 
z, see Fig. 2.33: 
 

 
Fig. 3.33 Modeled geometry 

 
As is known since the times of Maxwell, The equipotential surfaces are curling upwards 
close to the edges of the parallel plates, see Fig. 2.34 
 

 
Fig. 2.34 Potential contourplot of a finite capacitive electrode above an infinite grounded 
plan, for L = 10 µm and z = 1 µm. Light regions correspond here to intermediate 
voltages. The dark southern region is close to 0 V, while the electrode is at V = 1 V (in 
the actual simulation: ½V = 0.5 Volt.). 
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Towards the perimeter of a parallel plate capacitor, the electric field midway between the 
electrodes becomes weaker, while at the electrode itself the field is very strong, leading to 
concentrations of surface charge there. Neglect of the fringe effect underestimates the  
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Fig. 2.35 Double logarithmic plot of Finite Element Modeling of the force between 
parallel plate electrodes. The vertical axis denotes the simulated force divided by the 
theoretical force, given by Eq. (2.7).The small dots represent the force on the underside 
only of the plate electrode, while the thick dots are the total force, which is generally 
lower: for an electrode of finite size, there is a small electric field present above it, 
tending to pull it upward. 
 
actual capacitance. For various aspect ratios L/z (L varied, z kept constant), the FEM 
force is compared to the force given by the standard formula Eq. (2.7), see Fig. 2.35. 
It is seen that noticeable deviations from the standard parallel plate formulary occur for 
aspect ratios below 10 or 5, a bit dependent on what precision is demanded18. Aspect 
ratios for MEMS capacitors encountered in this thesis are typically of the order of 100, in 
which case the thus introduced error is within the order of one percent. 
 
 
2.5.4 Breakdown 
 
As encountered in measured C(V)-curves in Chapters 3 and 4, typical voltages occurring 
in MEMS-devices can be of the order of at least a few Volt. Given that gap distances are 
in the order of a micrometer, this raises the question of whether an avalanche discharge 
may occur if the MEMS is operated in vacuum or in air, given that the breakdown field of 
air at atmospheric pressure is about 3·106 V/m. In 1889, Paschen [24] found however that 
the breakdown voltage between two plate electrodes depends not only on the gas 
pressure, but also on the electrode separation (at close distances). For the critical voltage 
Vc at which breakdown occurs he established 
 
 ( )

ln( )c

a Pz
V

Pz b
=

+
, (2.130) 

 
 

                                                 
18 Incidentally, the force between two point charges is a pure fringe effect. 
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where P is the pressure and z the electrode separation. a and b are constants that depend 
on the composition of the gas. For P in atmosphere and z in meters, a = 43.6 MV and b = 
12.8. If the plates are brought closer, the breakdown voltage decreases, reaches a 
minimum and then rises steeply, as with decreasing distances it is harder to ionize enough 
gas atoms to create an avalanche effect. At low pressures or very close spacings, the gap 
becomes at the order of the mean free path of electrons. Paschen curves for various gases 
are plotted in Fig. 2.36. 
According to Paschen’s law Eq. (2.130), there exists for every pressure a minimal 
breakdown voltage (Paschen minimum): 

( )
0cdV

d Pz
= gives 1

min( ) bPz e −= , so that 

 
 1

,min

b

cV ae −= . (2.131) 
 
In air, one cannot have a discharge below 327 V, irrespective of pressure and electrode 
separation. At atmospheric pressure, this minimum occurs at z = 7.5 µm. For MEMS 
devices, it is in principle inconvenient that the Paschen minimum occurs at this particular 
(close) distance, but the involved breakdown voltage is still comfortably large. 
The case is however more complicated than this. Paschen’s law predicts that for gaps 
decreasing to 2.76 µm, at atmospheric pressure the breakdown voltage tends to infinity. It 
has been experimentally established, that breakdown still occurs at this close distance. 
Experiments by Dhariwal et al. [25] indicate that for gaps below ~ 10 µm, differences 
with Paschen’s law start to occur and that below 4 µm Eq. (2.128) ceases to satisfactorily 
predict the breakdown voltage. Their results for nickel electrodes at P = 1 atm. are 
presented in Fig. 2.37 
 

 
 
Fig. 2.36 (left) Paschen curves for air and argon 
Fig. 2.37 (right) Breakdown voltage at P = 1 atm.versus gap distance for clean nickel 
electrodes. The solid concave curve represents data gathered by CIGRE  (International 
Conference on Large High Voltage Electric Systems) in the 1970’s [6], extrapolated to 
small gap distances. Reproduced from [25]. 
 
Paschen’s law is still valid in region D. Below z ~ 10 µm there is a plateau C just above 
the theoretical Paschen minimum. For lower gaps (A and B), breakdown behavior is 
observed opposite to Paschen behavior. Breakdown at 12 V (air) has been observed for z 
= 0.25 µm.  
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The deviations are amongst others attributed to field emission (see also subsection 2.3.3), 
and therefore the electrode material starts playing a role (through the work function). 
Surface roughness starts playing a role as well, as small protrusions cause high local 
electric fields, facilitating emission. The exact reasons and underlying mechanisms for 
the observed behavior are still not very well understood. 
Consequently, MEMS devices should not experience problems at ambient conditions and 
moderate voltages, but breakdown is certainly an effect that has to be taken into account. 
The flexibility of moving elements in actuators should be such that low voltages are 
sufficient to displace them. If a microswitch is designed too stiff or with a too small 
actuation surface, breakdown voltage might be below the pull-in voltage. This does not 
require extremely pathetic design parameters, but for typical values there is no danger of 
Vpull-in approaching Vc. For example: for z = 1 µm, k = 1000 N/m and A = 10–7 m2

 , (a 
relative stiff device) Vpull-in = 2.3 V, while for this gap breakdown occurs at around 50 V 
(material dependent). However, in designing and operating MEMS devices, it is still 
important to ascertain breakdown will not affect proper functioning. 
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CHAPTER 3 

 
 
 

MEASUREMENTS ON  
RF POWER SENSORS 

 
 
The EMMA (ElectroMechanical Microcomponents for precision Applications) – project 
(IST-2000-28261) [1] was a three-year European project running from 2001-09-01 to 
2004-08-31. It was put forward for the development, improvement, characterization and 
packaging of a variety of stable capacitive MEMS-based components, among which 
power sensors, accelerometers and voltage standards [2]. Some publications in the spirit 
of this project are [3, 4]. The participating consortium consisted of seven partners, of 
whom the University of Twente cooperated with VTT (Finland) for the development of a 
sensitive HF power sensor. 
This activity was guided by challenging demands concerning sensitivity and stability of 
the High Frequency (HF) power sensor. Regarding the former, commendable progress 
was achieved. Regarding the latter, it had been recognized that charge trapping could 
pose a limitation. Presented in this chapter are measurements on charge trapping in the 
full-grown, real(istic) devices developed in the context of the above-mentioned EMMA-
project. In Chapter 6, it is calculated when trapped charges become a limiting factor. 
Capacitive MEMS structures sometimes have to operate at low temperatures. This could 
be imposed by the ambient conditions, most notably space missions. In other cases, they 
are part of cryogenic electronics, either because of superconducting elements or just to 
reduce thermal noise. This is the motivation to study the effects of charge trapping at 
various temperatures in the cryogenic regime (down to 4 K). The large variations in 
temperature may well have their repercussions on the thermo-mechanical behavior of the 
device under test. It is necessary to pay attention to this influence. 
The structures covered in this chapter are to be divided into two classes, most readily by 
the criterion of the type of bridge (top electrode) used; silicon nitride or aluminum. More 
details of these samples are to be found in the corresponding sections 3.2 and 3.3. For 
further research on charge trapping, performed on newly designed samples, be the 
reader invited to Chapter 4.  
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3.1 MEASUREMENT PRINCIPLES AND SETUP 
 
3.1.1 Impedance measurement 
 
The probing of the samples in this chapter was invariably according to a four-contact set-
up; High and Low Voltage and High and Low Current using four coaxial cables, see Fig. 
3.1. 

 
Fig. 3.1   Measurement connection scheme 

 
An HP4194A applied a bias voltage between the voltage contacts, with an 800 kHz 0.3V 
amplitude AC-voltage on top. The impedance is determined by reading the current, and 
internally translated to capacitance. These latter values have been recorded in the data 
files. The grounds are connected as close as possible to the sample, in order to 
compensate for any parasitic capacitance of the cables. Obviously, the cables must be 
identical.  
 
A typical example of a measured C(V)-curve is provided in Fig. 3.2. It is shown what 
information can typically be retrieved from such a curve and what orders of magnitude 
relevant quantities have. The measured device is an aluminum bridge as described in 
subsection 3.3.1., in particular Fig. 3.17. The capacitive area is 3600 µm × 100 µm. For 
this type of samples, parasitic capacitance is neglected. 
 

 
Fig. 3.2 Typical C(V) – curve, measured on an aluminum bridge RF power sensor, at 
300K. 
 
The dots represent actual data points (Vi, Ci), while the continuous line is a quadratic fit 
C(V) = αV² + βV + γ. Obviously, we see that for V = 0 we must have γ = C0. The big dot 
marks the minimum of the fitted curve. Assuming no significant parasitic capacitance, the  
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sample has a rest gap of z0 = ε0A/C0 = 0.91 µm. This is very close to the designed value of 
1 µm, see subsection 3.3.1. At V = 2 V, the electric force F is 7.8 µN downward (Chapter 
2, Eq. 2.7). On stiffer devices than this one, larger electric forces of up to several mN can 
be applied before the bridge electrode is pulled in. Assuming further that the plates 
remain parallel during actuation, we can write dC/dz = –ε0A/z2 so that the displacement is 
∆z ≈ z0

2∆C/ε0A = 29 nm downward, which is about 3% of the gap distance. The parabolic 
coefficient α = C0

2/2kz0
2 is fit to 0.026 pF/V2, and with a zero – capacitance C0 = 3.52 pF 

and a gap z0 = 0.91 µm, the spring constant is estimated to be 0.3 kN/m. From C0 and α 
the pull-in voltage 

04 / 27pull inV C
−

= α  (Eq. (2.15)) is estimated to be 4.5 V. This is just 
more than twice the maximum applied voltage, so it is to be expected that the C(V)-data 
are still in the “parabolic regime”, i.e. they can be fit adequately by a quadratic function, 
as has been discussed in subsection 2.1.2. This is confirmed by inspection of Fig. 3.2. 
 
The minimum of the fitted quadratic curve Voffset is retrieved by 
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It has here the relatively small value of -0.065 V. A check will be provided whether the 
fit quality is such that this small offset is significant. For the second degree polynomial fit 
used here, let V  be a matrix consisting of row vectors (Vi

2, Vi, 1) where Vi is the voltage 
of the ith data point. Further, let S be the sum of the squares of the residuals:  
S = Σi(C(Vi) – Ci)2. Then the standard errors σ in the coefficients α, β, γ are given by 
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Here n is the number of data points and must obviously be larger than the number of 
polynomial coefficients, 3. 
The double indices indicate the diagonal elements of the 3 × 3 inverse matrix of the 
product of TV (T is “transposed”) and V . The relative standard error in Voffset is then 
given by 
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It is found that σVoffset = 0.05 Voffset. The overall standard deviation of the fit comes out at 
σC = 0.0013 pF, about 1% of the total variation of the capacitance between 0 and 2 Volt. 
This confirms that the data points are well fittable and that the nonzero value of Voffset can 
be considered significant. It is known that electrodes of different materials can give rise 
such an offset, as mentioned in subsection 2.3.1. The electrodes of the device from which 
the curve in Fig. 3.2 was measured are made of identical material (aluminum). From a 
material point of view, an offset would not be expected. 
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3.1.2 insert, flow cryostat 

The majority of the temperature-varied measurements have been carried out using a flow 
cryostat. The sample was mounted on an insert finger and connected to coaxial cables 
with a characteristic impedance Z0 ( for a lossless line Z = √(L/C) ) of 50 Ω, the grounds 
being interconnected only here. The sample was surrounded by a mu-metal case and a 
brass case, shielding the sample from external magnetic and electric dc and low 
frequency fields respectively. On the opposite side of the sample, one leg of a chromel-
alumel thermocouple was attached for temperature reading and control, governed by a 
Lakeshore 320 Autotuning temperature controller. This required a heating wire, which 
was wound around the outer (brass) case. A flow cryostat cools by pumping liquid 
helium through a tube spiraling around the chamber containing the insert. The helium is 
in thermal contact with the chamber wall, which in turn absorbs heat from the gas 
surrounding the sample case. Of course, all is isolated from the environment by internal 
radiation shields and a vacuum wall. Compared to a bath cryostat, a flow cryostat has the 
advantage of low helium consumption. Because the helium is pumped, it is possible to 
reach temperatures even a few degrees below helium liquefaction temperature (4.2 K). 
Because of degraded accuracy of the thermocouple in this low regime, the recorded 
temperatures are less reliable. Because the helium flow can be regulated, it is possible to 
conduct measurements at stabilized intermediate temperatures, e.g. 100 K, though at 
relatively ‘high’ temperatures the temperature control circuit allowed temperature 
fluctuations of about 1 K (at temperatures ≤ 30 K fluctuations are less than 0.1 K). 
 
 
3.2 SILICON NITRIDE BRIDGES  
 
3.2.1 Devices 
 
The first class consists of capacitive MEMS of which the bridge was made of silicon 
nitride, bearing electrodes that formed a capacitive coupling to the underlying 
(conductive) substrate. These samples have been developed [5] in the context of the in 
EMMA project mentioned in the introductory text of this chapter.  A cross section of the 
design (Fig. 3.3a) and a picture of the samples used are shown (Fig. 3.3b). 

 
Fig. 3.3a: Schematic cross section Si3N4-bridge 



 3.2 Silicon nitride bridges 

 69

 

 
Fig. 3.3b: Top view Si3N4-bridge (optical microscope) 

 
The device consists of three top electrodes, which are carried by a 1 µm thick silicon 
nitride (Si3N4) bridge19. The two flank electrodes act as read-out electrodes, while the 
central electrode is for feed-back purposes. The electrodes are capacitively coupled to the 
substrate. This substrate is a p-type, highly doped silicon wafer. The substrate is covered 
on both sides with 0.5 µm silicon nitride as isolation. On the left of Fig. 3.3 a magnified 
cross-section of the MEMS capacitor is shown. The top electrode is sputtered platinum 
(150 nm) on 10 nm sputtered chromium, which acts as an adhesion layer. The capacitive 
gap z0 is partly filled with two layers of Si3N4, which has a relative dielectric constant ε of 
7.5. The lower Si3N4 layer (0.5 µm) covers the conducting silicon substrate as an 
isolation layer. The upper layer (1 µm) forms the bridge that supports the top electrodes. 
The air gap was designed as 1.2 µm. Summing these three numbers gives a design value 
for z0 of 2.7 µm.  
Also drawn are peduncles, pending under the silicon nitride bridge. They very much 
reduce the chance of sticking of the bridge onto the substrate upon pull-in (or other 
circumstances that cause the bridge to collapse). This is because of the large reduction of 
the potential sticking area. Either they much reduce the distance over which the bridge 
collapses when pull-in is effectuated, or they prevent a proper pull-in induced movement 
altogether, that is, it is mechanically prevented that the bridge reaches its unstable point20, 
irrespective of the magnitude of the applied voltage.  
In a part of Fig. 3.3 and in Fig. 3.4 we see that the bridge is perforated with small etching 
holes. They facilitate wet-etching of the sacrificial polysilicon layer that sustains the 
bridge during the fabrication process. They reduce the effective capacitive area by about 
5%. The measurements presented in this section have been done by using the two read-
out electrodes, which have a combined capacitive area A of 2 × 90 µm × 3600 µm.  
It should be noted that the bridge approximates in fact a four-sided clamped plate, rather 
than a clamped-clamped beam. Two opposite sides are clamped by the top silicon nitride 
layer, and two sides are partially clamped by the electrodes on top of the bridge. This is 
seen in the schematic in Fig. 3.3 from the right read-out electrode. The right side picture 
of Fig. 3.3 shows how the central electrode is connected to the contact pad. 
The particular configuration of the electrodes entails a few notable points of attention. 
First and foremost, the equations of a pure parallel plate capacitor have to be extended so  

                                                 
19 Instead of the stoichiometric formula Si3N4, a different notation is sometimes used for silicon 
nitride: SiRN. Here “R” is written to emphasize the low-stress fabrication process of  “Reaction 
bonding”. 
20 For a pure parallel plate capacitor, with or without dielectric layers, the capacitance will never 
exceed 1.5 times its unactuated value before pull-in, see subsection 2.1.4. 
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as to encompass the presence of dielectrics by including a voltage-independent series 
capacitor. The capacitance Cd over the dielectric layer is 27.45 pF. This will have an 
immediate consequence for at which voltage pull-in is expected to occur, see subsection 
2.1.4 for a more detail. Another important point to note is that the bonding pads and the 
interconnecting on-chip wiring make for a parasitic capacitance, as can be seen from the 
right inset in the schematic of Fig. 3.3. The metallic electrode is capacitively coupled to 
the substrate, separated only by the Si3N4 isolation layer. This constant parasitic 
capacitance is parallel to the variable MEMS capacitance. Its value is calculated to be 
4.91 pF. 
 
 
3.2.2 Thermal dependence 
 
Before addressing the temperature dependence of charging-related effects it is necessary 
to survey the thermo-mechanical characteristics of the involved samples. During a 
cooling-down session in the flow-cryostat the capacitance (at constant zero bias voltage) 
has been followed. The sample is described in the previous sub-section. The advantage of 
measuring single capacitances over measuring a series of C(V)-curves is that the effect of 
a rapidly changing temperature is followed as closely as possible. On the other hand, this 
yields no information about what happens with other characteristics such as built-in 
voltage and curvature. This cooling down series, which took 45 minutes to reach 2K, is 
displayed in Fig. 3.4. 

 
Fig, 3.4 Capacitance vs. temperature, arrows indicate direction of time. A calculated 
parasitic capacitance of 4.9 pF has been subtracted from the shown data. 
 
After cooling down to 2K, the capacitance has increased by about 35% compared to the 
value at room temperature. The capacitance values as shown in Fig. 3.4 are assumed fully 
attributable to the MEMS structure itself; in other words: possible capacitive 
contributions from wiring, electronics, surroundings and readout signal (Eq. 2.79) are 
considered negligible. From a capacitive area of 2 × 90 µm × 3600 µm a capacitive gap z0 
of 4.4 µm (including the dielectric Si3N4 layers) at room temperature is derived, rather 
than the 2.7 µm as designed (see subsection 3.2.1). The observed amount of change in 
capacitance through temperature could be explained by a gap decreasing to 3.7 µm. The 
most natural explanation for the variation in capacitive gap is deformation of the bridge, 
imposed by differences in the expansion coefficients of the different materials used. It is 
not clear if the measured trend is conform expectation. The three materials that make up 
the device, silicon, silicon nitride and platinum, contract in unequal amounts when the  
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temperature is lowered. What can be said is that the metallic electrodes will try to enforce 
an upward curvature of parts of the silicon nitride bridge. However, the overall cross-
sectional shape of the silicon nitride bridge is quite complicated. This makes predicting 
the exact deformation of the bridge difficult. Connected with this is the question whether 
the (effective) capacitive gap will increase or decrease. 
For the temperature range 20-150 K available C(V) - curves provide more insight in the 
temperature dependent behavior of various mechanical characteristics (Figs. 3.5 and 3.6). 
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Fig. 3.5 (left) Capacitance variation with temperature 
Fig. 3.6 (right) Curvature variation with temperature 
 
The measurement series consists of phases of stabilized temperatures at 20 K, 50 K and 
100 K, with intermediate curves taken at in-between cooling down stages. For the given 
temperatures, the capacitance values are in concordance with Fig. 3.4. As expected for a 
lowered bridge, the device becomes more sensitive, which is reflected in the increased 
parabolic curvature shown in Fig. 3.6. From this curvature, the stiffness k can be derived, 
as in Eq. (2.11). These stiffnesses are plotted against temperature in Fig. 3.7. 
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Fig.3.7 Estimated stiffness with temperature 

 
The spring constant does not change too much, although the slight trend that is visible 
would be expected reversed. At lowered temperatures the silicon nitride, with a thermal 
expansion coefficient of 3 µm m–1 K–1, is inclined to contract slightly more than the 
silicon substrate 2.6 µm m–1 K–1. As the silicon nitride bridge is frustrated in its attempt 
to contract by the substrate, this would cause a tensile stress in the bridge which would 
increase the spring constant. As mentioned earlier, the platinum (9 µm m–1 K–1) 
electrodes want to contract even more, also contributing to tensile stress.  
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3.2.3 Built-in voltage in silicon nitride bridges 
 
For two stabilized temperatures (20 K and 294 K) the built-in voltage fitted from series of 
C(V)-curves are compared (Figs. 3.7, 3.8). C(V) curves are voltage-swept in alternating 
directions, corresponding with thick and thin dots representing the positions of the 
minimal capacitances in successive curves. 
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Fig.3.8 (left) Built-in voltage vs. time (T = 20 K)  
Fig. 3.9 (right) Built-in voltage vs. time (T = 294 K) Thin and thick dots correspond to 
alternating directions of the voltage sweep. 
 
In both cases, the most notable feature is the splitting of the two sweep-directions into 
two branches. At cryogenic temperatures this sample showed on average a difference of 
0.1 V in the built-in voltage of upramping and downramping voltage swept curves. For a 
long series at room temperature, the average splitting turned out to be five times as high 
(0.54 V). The thick dielectric layers in this sample prove ample trapping states, which 
facilitates the occurrance of relatively high values for the built-in voltage (here 2.5 V at 
room temperature; the actual, or average value has not been found to display a correlation 
with temperature). For aluminum electrodes with their thin native oxide (section 3.3 and 
chapter 4), the built-in splitting has generally been found to disappear at temperatures 
below about 150 K, this in contrast with the case at hand where the phenomenon is still 
observed at T = 20 K. Observation of 3.9 also suggests a long term effect in the splitting, 
which widens at a rate of about 11 mV/hr.  
 
 
3.2.4 C(V)-asymmetry 
 
Initial cryogenic C(V) - measurements were not performed in a flow cryostat, but by 
using a cylindrical aluminum package, half-submersed in a bath of liquid nitrogen. This 
easy but rather primitive solution for cryogenic measurements has the advantage of quick 
sample mounting and absence of pumping installations, which is a potential source of 
noise. The disadvantages are that between room temperature and the boiling temperature 
of liquid nitrogen no intermediate temperature can be maintained and that the wiring and 
the aluminum case may introduce uncertain sources of off-chip parasitic capacitance. 
Shown below (Fig. 3.10) are two consecutive curves from one of the ‘nitrogen-series’, a 
backward-swept voltage followed by a forward-swept voltage. 
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Fig. 3.10 Asymmetric C(V)-curve 
 
The strings of small blue dots indicate measured capacitances for voltages varying 
between –40 and +40 Volt in this or in reverse order, in steps of 0.2 V. Both datasets are 
fitted by a quadratic function (thin black line). The big dot at the minimum in this fit 
marks the offset, or built-in voltage and the unactuated total capacitance, this is the 
device’s zero capacitance plus parasitic capacitances. Small deviations in the parabolic fit 
are visible in the minimum and at the outer edges, as is to be expected. If improved fitting 
is wanted, it is possible to select from the C(V) - dataset only those points closest to the 
minimum, because the quadratic fitting improves a lot far from pull-in. In some cases it it 
is possible to end up with too few points, however.  A second possibility is the inclusion 
of the quadratic Taylor term Eq. (2.13). A third possibility involves the assumption that 
the data are symmetric around the offset voltage. The usual parabolic fit should find this 
offset, even if curvature and minimum capacitance are less accurately determined. 
Starting from 
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its standard approximation 
 4 4

0 0( )offsetC uC V V C= − +  (3.5) 
 
yields a usable value for Voffset. Here u ≡ (2kε0

2A2)–1 and we identify the parabolic 
curvature α with uC0

4. Now, an array of X-values can be constructed by                     
Xi = Ci

2(Vi – Voffset)2 and an array of Y-values Yi = Ci
–1. If Eq. (3.4) is an accurate 

description of the data-points, the (Xi, Yi) should lie on a straight line 
 
 1

0Y uX C −= − +  (3.6) 
 
The verification of this for the two mentioned C(V)-curves yields (Fig. 3.11ab). 
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Fig. 3.11a (left). Compliance of C(V) data with straight line 
Fig. 3.11b (right) Idem, for second series of C(V) data 
 
Tiny but persistent aberrations from the ideal case (1)-(3) are to be remarked. In the first 
place, the data show convex curvature with respect to a fitted straight line. In the second 
place, for high voltages and capacitances (right side of the graph) the data sets split into 
two branches, pointing at a slight asymmetry in the capacitance values around the offset 
voltage: C(+|V| – Voffset) – C(–|V| – Voffset) ~ 2 fF for voltages higher than 30 V. These 
aberrations are more clearly demonstrated by subtracting the fitted line from the data 
(Fig. 3.12ab). 

 
Fig. 3.12a (left) Data aberrations from implicit C(V)-curve  
Fig. 3.12b (right) idem, for a different curve  
 
Before deciding upon whether we are dealing with a genuine effect, the accuracy of the 
impedance analyzer should be considered. The applied DC bias had an error of ±(0.12% 
+ 12 mV) which for the maximum applied voltage of 40 V comes down to ±0.05 V of 
systematic error. In the read-out capacitance a systematic error of ±0.25% is possible. For 
the capacitances under test this clearly exceeds the magnitude of the effect we are looking 
at. However, it should be noted that the indicated error is systematic, rather than random. 
Plausible candidates for explaining this effect, if any, are multiple; further measurements 
are needed to create more clarity. A few possibilities are mentioned: Deviations from a 
parallel plate geometry, on which Eq. (3.4) is based, are not expected to yield data sets 
asymmetric in the voltage. An additional force linear in the voltage, when parasitic 
charges are in the game, should only have an influence on the location of the offset 
voltage. However, as the measurement of a C(V)-curve is a time-extended process, time-
dependent quantities in Eq. (3.4) could play a role. For the duration of a voltage sweep, 
the zero capacitance may drift; perhaps a relaxation-effect in the membrane, or perhaps 
the measurement system. If this drift can be considered linear during a sweep, at first 
glance it should have little influence: Let the unactuated capacitance drift as 
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0 0 00( )C C t C ht= = +  (3.7) 
and the voltage be swept like 
 

00( )V V t V ft= = + . (3.8) 
 
Then in Eq. (3.4), the capacitance drifts linearly along with the voltage, with a rate 
(Farad/Volt) which is the ratio of the voltage increasing and the zero capacitance drift 
rate. In a parabolic approximation this would add a term linear in V, which has an effect 
on the offset voltage only. At a second glance, high drift rates make this argument 
problematic, so a further test has been performed, Fig. 3.13. 
 

 
Fig. 3.13 Simulation of linear capacitance drift throughout C(V)-measurement 

 
A 3.5 pF MEMS capacitor without parasitic charge is applied with a voltage sweeping 
from –40 V to +40 V in 60 seconds. Capacitive area and spring constant are 0.72 mm2 
and 8000 N/m respectively. The applied capacitance drift of 100 fF/hr is clearly higher 
than often seen in praxis (not more than in the order of 10 fF/h in stabilized conditions). 
The shortcomings of a quadratic fit are clear; though it might still have some use. The 
capacitance drift mimics a voltage offset of 46 mV. 
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Fig. 3.14 (left) Compliance of simulated C(V) - data with straight line 
Fig.3.15 (right) Simulated C(V)-data aberrations from implicit  C(V) - curve 
 
Although not immediately numerically comparable, the aberrations from (1) (fitted 
straight line in Fig. 3.14) are clearly different in form (Fig. 3.10) compared to the 
measured data in Fig. 3.12ab.  
But an important candidate for explaining the effect is a time-dependent amount of 
parasitic charge, which changes significantly during the sweep. In order to increase the  
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capacitance by 2 fF, its gap has to be narrowed by only 0.5 nm. A charge density in the 
order of 10–6 C/m2 is sufficient, which is not unrealistic and a density quite typical for 
devices like these.  
Another important candidate is mechanical hysteresis, which should be looked at further 
in order to evaluate its possible influence on C(V) - asymmetry. 
The capacitance changes in the order of 10%, which is easily understandable when 
considering the composition of materials the structure is made of: silicon (substrate / 4.7), 
silicon nitride (bridge / 3,21) and chromium-platinum (top electrodes / 4.9-8.8). Numbers 
indicate thermal expansion coefficients in µm m–1 K–1. 
 
 
3.3 ALUMINUM BRIDGES 
 
3.3.1  Devices 
 
Characteristic for the second class of samples, UT/EMMA RF power sensors [6], is the 
aluminum bridge. It simultaneously functions as flexible bridge and as top electrode. For 
an example, see the SEM picture in Fig. 3.16. The exact dimensions of the samples 
measured in this section, see Fig. 3.17. The capacitive area is larger than that of the 
sample shown in Fig. 3.16, which is beneficial for the sensitivity of the device.   

 
 
Fig 3.16 (left) Aluminum bridge MEMS 
Fig. 3.17 (right) dimensions of the measured device in µm. Crosses indicate areas where 
the aluminum bridge (blue) is in contact with the (Pyrex) substrate. The inset shows the 
dimensions of the etch holes in the aluminum bridge. Dark areas represent where the 
electrodes overlap. 
 
The bridge is suspended above aluminum electrodes, with boron-doped glass as substrate. 
The capacitive gap z0 is designed to be 1 µm. This device can be considered as an 
alternative for / follow up of the silicon nitride bridges. In applications, this design has 
several advantages with respect to the silicon nitride bridges considered in the previous 
section. Firstly, the fabrication process is much facilitated compared to the SiRN 
samples. Secondly on-chip parasitic capacitance is practically eliminated. This is because 
the aluminum bridge samples have bottom electrodes that have well-defined and  
 
                                                 
21 http://www.azom.com/details.asp?ArticleID=77 
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restricted shapes. The geometrical overlap of the top and bottom electrodes occurs only at 
the movable bridge. In case of the silicon nitride bridges, the complete substrate acted as  
the lower electrode. This introduces parasitic capacitances to the bonding pads, as 
explained in the previous section.  
Thirdly, thick dielectric layers are absent in the aluminum bridges. Only 2.5 nm natural 
aluminum oxide is present. Based on the discussion in section 2.3, it is expected that the 
effects of charge trapping will be reduced for a couple of reasons. In the first place, with 
thin layers there are less (bulk) sites to trap charge in. In the second place, thick dielectric 
layers enhance the influence of the trapped charges on the total electrostatic force. At last, 
in thick dielectric layers, transport mechanisms other than metal-surface tunneling will 
start to become important, which affects the migration behavior of trapped charge.  
As a last (fourth) advantage, improved thermo-mechanical properties might be 
mentioned. In [7], pp 65, this expectation is put forward. This is based on that the 
aluminum bridge consists of a single material. In contrast, the silicon nitride bridge has 
electrodes that have considerably different thermal expansion coefficients. The latter 
structure acts as a bilayer that potentially deforms when subjected to thermal variations. 
The aluminum bridge should not suffer from this effect. However, this does not take into 
account the potential influence of the substrate. This had already been signaled in [8, 9]. 
The thermo-mechanical properties of this device will be considered in the next 
subsections, 3.3.2 and 3.3.3. Subsection 3.3.2 discusses an experiment in which a series 
of C(V)-curves has been quickly recorded during a trajectory in which a sample was 
rapidly cooled down. It is used as a first test of how the characteristics of the device 
change with temperature. The experiment covered in subsection 3.3.3 consists of series of 
C(V)-curves at stabilized temperatures. Here, the stiffness is explicitly linked to the 
change in temperature and discussed. The relatively simple design of the aluminum 
bridge encourages attempting such an analysis. On the other hand, the complicated 
silicon nitride bridges provide less tangible handles to proceed thus. 
At last, in section 3.3.4 the aluminum bridge will be tested for charge trapping effects. 
The role of temperature in these experiments is prominent.  
All aluminum bridge measurements have been performed in the flow cryostat, as 
described in subsection 3.1.2. 
 
 
3.3.2 Influence of rapidly changing temperature on aluminum bridge characteristics  
 
The measurement series presented in Fig. 3.18 and 3.19 was taken during a cooling stage 
from room temperature down to approximately 2 K. The total time of the series was  
3104 sec. In this period 304 C(V)-curves were recorded, taking 10.4 seconds per curve, 
including data saving for each curve. Each curve ranged from –3 to + 3 V (or vice versa). 
A curve consists of 13 sample points spaced 0.5 V. The temperature decreased linearly 
with time during the whole series except for the first and last few minutes. This implies 
that within the time-span of a complete C(V)-curve, the temperature dropped with about 
1K. Charge-related and other effects that produce small shifts in these curves are 
therefore not to be distilled from this kind of series (which was never intended), but 
parabolic fits to the data are satisfactory and provide reasonable values for capacitance 
and curvature.  
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Fig. 3.18 (left) Capacitance vs. temperature; arrows 
Fig. 3.19 (right) Curvature vs. temperature indicate direction of time. 
 
In Fig. 3.18 we observe that the capacitance increases when the temperature goes down. 
At some point, the rate of increase slows down. Suddenly, below 20 K there is a sudden 
increase. In Fig. 3.19 a reverse trend is noted. The parabolic curvature, a measure for the 
sensitivity of the device, decreases rapidly with decreasing temperature. Even more 
pronounced than in Fig. 3.18 is the fact that the biggest change in the parameter occurs at 
still relatively high temperatures. Also here “something happens” at around T = 20K, but 
it is less noticeable.  
By far the most plausible explanation for the gradual but considerable change in 
capacitance between 300 K and 30 K is a decrease of the capacitive gap. Autonomous 
capacitance drifts of this order are not expected. 
But this behavior of the characteristics offers a few more points of concern. Namely, at 
first thought more plausible seems the reverse trend: decreasing capacitance with 
decreasing temperature. Suppose one starts with a bridge with a slightly concave (hollow, 
curved upwards) shape. The aluminum bridge has a thermal expansion coefficient of     
23 µm m–1 K–1. The glass substrate comes out at only 3 µm m–1 K–1.  Upon cooling down, 
the aluminum bridge wants to contract considerably more than the substrate. This would 
stretch the bridge straight like a taut sheet in case of a pure and strict clamped-clamped 
situation. This would increase the gap and decrease the capacitance. However, there are a 
few possibilities. The first is that the bridge starts at room temperature in a convex 
(curved downwards) and (relatively) stress-free state. Cooling down and stretching would 
now decrease the gap and increase the capacitance. A second possibility is hypothesized 
in Fig. 3.20 [7]. 

 
Fig. 3.20 Example of tensile stress causing sagging of the bridge [7] 

 



 3.3 Aluminum bridges 

 79

 
The contracting bridge pulls the suspension corners out of the plump line towards each 
other. This forces the bridge in a concave shape, which decreases the gap. 
A second concern is the sudden ‘jump’ in the capacitance below ~20 K, as was already 
mentioned. No convincing explanation has been found for this, but a hypothesis to 
explain this anomaly is shortly discussed at the end of subsection 3.3.3.  
The third concern is that the curvature shows a trend in the temperature that is reversed 
with respect to the capacitance. This is counter-intuitive when recapitulating Eq. (2.11), 
relating capacitance C0 to curvature α. In this relation, k is the spring constant and A is the 
capacitive area. Irrespective of a change in the unactuated capacitance is due to a change 
in capacitive surface A (quadratic dependence of curvature), or due to an altered gap 
(quartic dependence), an increased capacitance is expected to increase the curvature22; 
less electric force (voltage) is needed to effectuate the same amount of absolute 
capacitance increase. 
Further considerations touching upon the effects observed here will be discussed on the 
basis of temperature-stabilized measurement series presented below. 
 
 
3.3.3 Influence of varied stabilized temperature on aluminum bridge characteristics 
 
Even if the temperature is stabilized to a fixed value, the mechanical characteristics of the 
aluminum samples show practically the same dependence on the temperature (Fig. 3.21, 
3.22) as in the case of a rapidly declining temperature, as presented in the previous 
subsection.   

 
Fig. 3.21 Thermal dependence of C  Fig. 3.22 Thermal dependence of curvature 
 
Measurements were carried out at temperatures in a range of 4-270 K on the exact sample 
in subsection 3.3.1. Temperatures were stabilized and curve series lasted about 25 
minutes. A single curve took 40 seconds to record 31 sample points, between –3 V and   
0 V (not +3 V, as in subsection 3.3.1), so that the voltage stays unipolar during a curve. 
The thermo-mechanical results for 0 V to +3 V - curves are similar to those presented in 
the current subsection. Assuming at 270 K a gap of 1 µm, in accordance to the sample 
design, a spring constant can be estimated from the capacitance and the curvature, by 
making use of  Eq. (2.11), See Fig. 3.23a. 
 

                                                 
22 This ‘expected’ correlation has indeed been observed for different samples (Capacitance still 
increased for decreasing temperatures). However, also here the change in capacitance and curvature 
do not match unless the stiffness is assumed to vary considerably. 
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Fig. 3.23a Spring constant vs. temperature 
Fig. 3.23b Experimentally derived spring constant derived from the parabolic curvature 
together with an estimate by calculation assuming a capacitive gap of 1 µm 
 
Fig. 3.23b combines these data with a calculated value for the spring constant, which has 
sample geometry, material properties (linear thermal expansion coefficients of bridge and 
substrate, Young’s modulus, Poisson ratio), stress due to thermally-induced strain and an 
offset residual film stress as input. The material properties are in decreasing order of 
temperature dependence, which has been taken into account for all of them. For the 
residual film stress a value of 35 MPa [6,7] was taken. 
In order to accommodate the observed trend in curvature with the trend in capacitance, 
the spring constant needs to vary for more than an order of magnitude. As calculation 
shows in Fig. 3.21b, a build-up in tensile stress can very easily accomplish this. A further 
argument for the spring constant indeed being influenced by thermo-mechanical stress is 
the flattened trend between 15 K and 130 K with respect to 130 K-270 K (Fig. 3.23a). At 
lower temperatures, the thermal expansion coefficient of aluminum tapers off to zero, so 
that further cooling down adds relatively little additional stress; be it that calculation 
predicts this flattening to happen at lower temperatures, say 70 K. At these temperatures, 
the plate modulus of aluminum has increased by about 13% compared to room 
temperature, which predicts the flattening to happen at somewhat lower temperatures; 
this is a mild effect however. 
Obviously, far stronger hitting the eye is the difference in magnitude between 
experimentally-derived and calculated spring constant. As displayed in Fig. 3.23b, two 
considerations have already been taken into account. The first one is that the aluminum 
bridge, like the silicon nitride bridge, is perforated with long rectangular etch holes. They 
make the bridge effectively narrower by about (only) 20%23, a correction which has been 
put through in the calculated spring constant. At the same time, the capacitive area is 
reduced by 16% because of these holes. The measured room temperature value of the 
capacitance of 3.2 pF is in very good agreement for the value of a capacitor with an 
unperforated bridge. As parasitic capacitance is mainly stray capacitance (about 0.2 pF), 
the ‘correct’ value for C0 is restored by decreasing the gap. This increases the from 
measurements interpreted spring constant by about 40% (1/gap2).  
 
There are some important remarks to be made, however. The parabolic curvature α Eq. 
(2.11), from which the spring constant is derived, contains the capacitance to the fourth  

                                                 
23 The picture in Fig. 3.16 gives a distorted impression in this respect, where the etch holes seem 
considerably larger. The bridge for that particular sample spans 300 µm and is 200 µm wide, 
though the picture suggests a much larger aspect ratio. The sample actually used for the 
measurements discussed here measured 3600 µm width instead of 200 µm. 



 3.3 Aluminum bridges 

 81

 
power. If the bridge capacitance is not determined very accurately, for example when 
misestimating the parasitic component in the measured total capacitance, errors in the 
estimated spring constant blow up very quickly (although a parasitic capacitance will 
affect the spring constant only quadratically). The larger the portion of parasitic 
capacitance in the measured capacitance (which is expected small, however), the lower 
the estimated spring constant will be. After all, the fitted curvature is unaffected by the 
assumption of a parasitic capacitance, so that the same change in capacitance (upon DC 
bias actuation) has to be caused by a smaller capacitor, which can only be done by having 
weaker springs.  
More important is the distribution of the electrodes. The spring constant is calculated by 
expression Eq. (2.66), which is however valid for a centered electrode. The actual 
electrodes are located more off-center, which will increase the effective stiffness and 
wider the gap between calculation and experiment.  
Possibly partly countering the effect of the electrodes is if the stretching behavior of Fig. 
3.20 is assumed: The points which the bridge is clamped to are not rigid but are flexible. 
By the way, in-plane stress perpendicular to the beam axis will be present at the areas of 
contact between the bridge and the substrate, but rapidly subside further away from these 
areas. It is expected that this will have a comparatively low influence on the elastic 
behavior of the beam. Nevertheless, it is advised that this is investigated further by use of 
for example finite element simulations. 
An extra complicating factor is the large spatial extension of the bridge, which can show 
non-uniformities over its area, that can especially come to light when the bridge is 
exposed to stress. 
 
At last, concerning the sudden increase in capacitance, the speculative idea of the bridge 
touching the central floating electrode is briefly considered. A large jump in stiffness is 
easily understood as the effective beam length is suddenly cut in half. However, this 
increase is rather associated with a considerable discontinuity in the curvature rather than 
the capacitance. The opposite is observed though: the 20K-jump in the capacitance (Fig. 
3.18) is much larger than the corresponding discontinuity in the curvature (Fig. 3.19).  
Let us first consider the stiffness. It is assumed that the bridge undergoes a gradual 
downward deformation when the temperature is decreasing. Below a certain temperature 
it will make a physical contact with the center electrode. In practice, it is expected that his 
contact will only be at one or a few small areas, “contact points”. In this case, the 
stiffness should be increase less than would be the case when the bridge makes physical 
contact over its full width (3600 µm, the vertical direction in Fig. 3.17). 
Now consider the capacitance. When the bridge makes conducting contact with the 
central floating electrode, the latter becomes a grounded electrode like the bridge. Using 
a 2D finite element solver, an estimate has been made of the extra stray capacitance 
trough the substrate (Fig. 3.24). As soon as the central electrode becomes grounded, an 
extra stray capacitance of 0.2 pF adds to the measured capacitance. Not quite sufficient to 
explain the large step (0.5 pF), but not orders of magnitude off. Also, close inspection of 
Fig. 3.18 suggests that the increase of 0.5 pF does not happen in a single ‘leap’, but rather 
in a quick but smooth variation. Further deformation of the bridge also keeps on 
increasing the variable MEMS capacitance. In any case, the stray capacitance is a 
parallel capacitance. It does not add to the sensitivity of the MEMS device. It should not 
have an effect on α.  
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Fig. 3.24: Cross section of a piece of substrate with three parallel electrodes; Numbers 
are dimensions in µm. and indicate the values that have been used. Potential ranging 
from 0 V (blue, center) to 1 V (red, flanks)  
 
The described scenario is consistent for explaining a sudden capacitance increase, while 
at the same time the curvature shows a rather small decrease. Without anything special 
happening, such as for example physical contact as described above, Eq. (2.11) shows 
that only a large increase of α is compatible with a capacitance increase. 
 
 
3.3.4 Built-in voltage 
 
Fig. 3.25a shows the built-in voltage (or offset-voltage) plotted against time for a small 
MEMS capacitor, in a series lasting for over four days at room temperature.  
 
 

 
Fig. 3.25a Built-in voltage vs. clock time 
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Fig. 3.25b shows the capacitance in this minimum. 
 

 
Fig. 3.25b Capacitance vs. clock time 

 
Again, the two branches in the built-in voltage arise from the series having the curves in 
alternating sweep-directions. The minimum of the curve swings back and forth for every 
sweep. In the meantime a slow, exponential overall drift is visible.  
As remarked in section 2.3 the potential causes of built-in voltage are manifold. As the 
grounded and actuated electrode are of identical material, a difference in work function is 
not expected and henceforth a (constant) contribution. The capacitance trend as displayed 
in Fig. 3.25b shows drift speeds up to 1 fF/hr, which is regarded as too low for being able 
to mimic built-in voltages of 0.1 V. The capacitance does not split into two branches, 
denying rapid capacitance changes being a cause for the built-in splitting.  
Meanwhile, though no temperature data are available from this measurement, the 24hr 
period of smooth changes in the capacitance, which is especially visible in the first half of 
the graph, tempts to link the mechanical state of the tested device to be in direct 
correspondence to the surrounding (laboratory) temperature. From subsection 3.3.2, Fig. 
3.18 it is clear that temperature fluctuations of a few Kelvin are more than enough 
capable of swinging the capacitance for the 1.5 fF that is observed in Fig. 3.25b. 
Linking the actual value of a built-in voltage to a temperature dependency is problematic, 
as the exact history of the sample is important, for example. What is expected to be 
temperature dependent are dynamic aspects of built-in voltage; long term drift and 
splitting (back sweep and forward sweep yield different values, cf. Fig. 3.25).  A 
temperature dependence of this splitting has been repeatedly observed. The built-in 
voltage of a C(V) - curve series during gradual warm-up, is displayed in Fig. 3.26. 
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Fig. 3.26 Built-in voltage vs. temperature 



3 Measurements on RF power sensors 

 84

 
Remarkably, in a big range of temperature there is no significant splitting, which only 
appears quite suddenly above approximately 200 K.  
For the observation of the dynamic built-in voltage at stabilized temperatures, only 
unipolar C(V)-curves (cf. subsection 3.3.3) were measured, to attempt to enhance long-
term drift. For a single curve, the voltage is swept between either –3 V and 0 V or 0 V 
and +3 V in steps of 0.1 V in 40 seconds. At each temperature (15, 30, 70, 75, 85, 130, 
200 and 270 K) a series of negative and a series of positive ‘halfcurves’ was recorded, 
each taking 20-30 minutes. For both polarities, built-in splitting spread between –0.1 and 
+0.1 V, and drifts were in the order of –0.5 to +0.2 V/hour. In no case was a clear trend 
with the temperature discernible. It is immediately to be added that the error bars 
belonging to temperatures of 85 K and higher are itself several tenths of volts. It is 
insightful to single out a particular series, for example the positive half-curves at 130 K, 
for which built-in voltage and minimum capacitance versus time are given in Fig. 3.27ab: 

  
Fig. 3.27a Built-in voltage vs. time  Fig, 3.27b Capacitance vs. time 
 
Fig. 3.28 combines them in a single graph, displaying the location and the value of the 
minima in the repeatedly parabolic fitted data in this C(V) – series. 

 
Fig. 3.28 Locus plot of C(V) minima, running just over two cycles in time. 

 
The oscillatory trend of both built-in voltage and capacitance has a period of about 20 
minutes. For these series no curve-to-curve temperature data are available. However, a 
C(V) - series in the exact same measurement setup for a silicon nitride bridge at 100 K 
did contain detailed temperature data, which showed a fluctuation with an amplitude of 
about 1.5 K in a comparable (slightly shorter) period. From Fig. 3.18 it is deduced that 
capacitance changes with temperature with almost –4fF/K. Consequently, thermal 
fluctuations resulting from a non-perfect temperature control system are capable of 
causing the observed oscillations of the capacitance. Assuming a sinusoidal temperature 
trend that changes 128.5 K to 131.5 K peak-to-peak in half a period (10 min.),  
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the maximal change rate (where the sinusoidal slope is steepest) is ½π × 3 K / 10 min. = 
28 K/hr, which in turn would cause a maximal capacitance drift of about 100 fF/h. These 
high drift rates could cause a small but substantial portion of the built-in voltage, as 
estimated by the simulation shown in Fig. 3.13. This does not explain many phenomena 
like the phase shift in backward and forward curve built-in voltage, nor the full value of 
the built-in voltage, for which trapped charges and drifts therein still can be held 
responsible. However, it does show that temperature fluctuations claim a significant co-
authorship concerning some of the observable phenomena. This illustrates that research 
of charge-trapping related phenomena meets with problems if performed on the 
aluminum bridge structures described in this chapter. 
 
 
3.4 CONCLUSIONS AND DISCUSSION 
 
The capacitance of the silicon nitride bridge HF power sensors shows clear dependence 
on the temperature. A plausible explanation for an observed small asymmetry in the C(V) 
curves (measured in stabilized conditions) is charge movement during the course of the 
measurement of a C(V)-curve. This effect is however smaller than the possible systematic 
error of the impedance analyzer. Random noise in these curves is lower than the 
magnitude of the effect though. 
Thermo-mechanical properties of the aluminum bridge RF power sensors are even worse; 
as smooth and repeatable capacitance changes up to 30% have been observed, against 
10% for silicon nitride bridges. The possibly at first sight counterintuitively reversed 
trend of the curvature with respect to the capacitance change can be explained by a 
dramatic increasing stiffness of the beam. Calculations for the spring constant predict an 
influence of thermo-mechanical tensile stress that is even considerably higher than is 
interpreted from C(V)-curves. Too many complicating unknown factors can play a role 
for further resolution. A flattened trend for the stiffness at low temperatures is both seen 
in experiment and predicted by calculation, as a result of the decrease in the thermal 
expansion coefficient of the bridge material aluminum. 
For both the silicon nitride bridge samples and the aluminum bridge samples dynamic 
aspects of built-in voltage (long term drift and splitting) have been observed, but 
especially in the latter case the effects have been demonstrated to be obscured by heavy 
dependence of the C(V) - characteristics on the temperature. Therefore, in order to 
proceed with device-level study of temperature-dependent built-in effects, it is very 
desirable to employ structures which mechanical characteristics possess highly improved 
immunity against variations of ambient temperature. 
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CHAPTER 4 

 
 
THERMO-MECHANICALLY STABLE 

MEMS 
 
 

The primary goal of the research presented in Chapters 3 and 4 is to demonstrate 
temperature-dependent charge trapping effects. In the previous chapter it has been 
demonstrated that the characteristics (capacitance, sensitivity) of the EMMA/UT HF 
power sensors were amenable to fluctuations in temperature, even to such an extent that 
possible temperature dependence of charge trapping effects could not be decoupled. The 
secondary, serving goal to be addressed in this chapter is the realization of new test 
structures that are sufficiently thermo-mechanically immune. Section 4.1 describes the 
design and fabrication of these structures, based on two wafers: The top wafer provides a 
flexible element carrying a floating electrode; the bottom wafer supports two fixed 
electrodes. As fabrication, the top wafer undergoes wet bulk micromachining. A thorough 
account of this technique is given in [1, chapter 4] and incorporates the novel concept of 
double wet-etched beam springs, demonstrated for the first time in this thesis. To the 
bottom wafer, only surface micromachining is applied to create a capacitive gap 
embedding the electrodes. Section 4.2 describes a preliminary electromechanical test of 
one of the bulk micromachined top structures by combining a C(V) - measurement with 
Phase Shift Interferometry. Section 4.3 contains electromechanical characterization of 
complete devices in order to accurately determine the stiffness of the devices. In section 
4.4, firstly the thermo-mechanical stability is verified. As stated above, this is a key 
property. Then, the temperature-dependent behavior of charge trapping in these devices 
is investigated. Section 4.5 contains a high-vacuum experiment at room temperature. 
Finally, conclusions are summarized in section 4.6. 
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4.1 DESIGN AND FABRICATION 
 
4.1.1 General design description and considerations 
 
The demand of thermal stability imposes minimal differences in the respective thermal 
expansion coefficients of the bottom and top parts of a parallel plate configured 
capacitive MEMS, for this, a two-wafer approach (see Fig. 4.1) is a good option, which 
provides flexibility in the choice of electrode material and offers a monocrystalline 
(silicon) suspension, which minimizes mechanical creep and hysteresis. 

 
Fig. 4.1 Two-wafer capacitive MEMS 

 

The top structures have been realized in a 
variety of forms, but the double springs are 
expected to keep the electrodes parallel 
during actuation even for one-sided 
suspended structures like in the 
illustration. These springs can be realized 
thin enough for sufficient sensitivity. The 
electrode material can be deposited on 
both sides to eliminate thermo-mechanical 
curvature of the structure. 
For electric probing of the top electrode 
several solutions come into consideration, 
but this is not really necessary, if two 
bottom electrodes are used instead of one. 
The result is two capacitors in series, 
across which the applied voltage will be 
distributed.

Trapped charges will manifest itself via a constant offset voltage. This design has the 
obvious advantage of easy fabrication. There will be a loss of sensitivity compared to a 
non-floating top electrode. Still, the device can be made easily sufficiently sensitive for 
the purpose of charge trapping research.  
The configuration of the electrodes is schematically drawn in Fig. 4.2. 

 

 

Fig. 4.2 Schematic electrode configuration 
 
The sample capacitance consists of two, possibly unequal, capacitances in series. This 
effective series capacitance is valued 
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and is smaller than each of the partial capacitances C1, C2. 
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The partial capacitances are intended to have equal gaps, wich justifies the second 
equality sign in Eq. (4.1). The ‘series’ area As is defined in terms of the capacitive areas 
A1, A2 of the partial capacitances and is the equivalent area of a single capacitor with gap 
z replacing the series capacitors. Because the total voltage V distributes over the two 
series capacitors, the voltages V1, V2 over the gaps are lower than would be in case of a 
connected top electrode. Consequently the magnitude of the electric force over the bridge 
is lower and comes out at: 
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z z z

ε
= − − = − , (4.2) 

 
which demonstrates that this two-capacitor configuration can be fully described in terms 
of an equivalent single parallel plate capacitor with electrode area As. Now given a top 
electrode has a total capacitive area A and partial areas A1 = pA, A2 = (1 – p)A, 0 < p < 1, 
the series capacitance Cs is (naturally) maximal for p = ½. In this case, As = ¼A. 
Consequently, for a fixed total voltage V over the device, the force on the bridge of the 
current three-electrode configuration is reduced with at least a factor 4 compared to a 
capacitor with two parallel plate electrodes of area A. 
 
 
4.1.2 Top structure design 
 
The top structures appear in frames each containing six members, see Figure 4.3. The 
total wafer mask is mirror symmetric so that it can be used on both sides of the wafer. 
Structures appear in two series of frames of each containing six structures, in which 
various forms are realized and tested.  
 

 
Fig. 4.3 Designed structures and dimensions in µm; the inset magnifies a corner etch 
prevention strip, measuring 1000 × 20 µm², see sub-subsection 4.1.5.3. 
 
The frames measure 19 × 36 mm². The left frame contains one- and two-sided suspended 
structures; the right contains various four-sided suspended structures. All structures, 
except the top left and the top right in the left frame, and the four-leaf clover in the right 
frame are expected to release any remaining thermo-mechanical stress partly by freedom 
in geometry. But neither in the ‘rigid’ structures is significant deformation upon cooling 
expected. The top carrier and its suspension are of identical material (silicon) as the  
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surrounding frame. The empty spaces in the frames on the right sides are for contact to 
the bottom wafer electrodes. The structures will be formed by wet bulk micromachining. 
More on this process can be found in subsections 4.1.3-4.1.5.  
 
The choice for the structures (labeled a, b, … k, l) is motivated as follows: Structure a 
has a relatively large capacitive area and is always parallel. b has the same area but the 
suspension is weaker. This makes for a more sensitive structure. Even with the springs 
only on one side, it is expected that the structure always remains parallel, in accordance 
to what has been stated in 4.1.1. If because of a remaining bilayer working there is some 
deformation effect or stress build-up, the structure has more freedom than a to alleviate 
this stress. c has springs of double length compared to most other structures. This greatly 
enhances sensitivity. d is a variation of b but with half the capacitive area. e is a variation 
of a but with half the capacitive area likewise. f can be considered a variation of d. Any 
thermo-mechanical stress can be alleviated by rotation of the suspended mass. The four-
sided clamped structures (right frame) are pairwise identical and mirrored. The clover-
shaped structures g and h are identical. Given the available space, they maximize the 
capacitive area while the springs are as simple as possible and not too short. Structures i 
and j have very long springs, which enhances sensitivity more than for example c while 
having the same capacitive area (4 mm²). k and l are relatively rigid structures which can 
act as comparison structures for i and j. The latter four can release any remaining stress 
by rotation. 
 
Bare corners of structures are especially vulnerable and should be protected against 
excessive etching. A common measure is to adopt sacrificial tree-like structures in the 
corners. In this case it was chosen to artificially ‘conceil’ the corner by elongating one 
mask edge with a narrow strip that can easily be removed with tweezers afterwards if 
desired, see the inset of Fig. 4.3. Some more spring sizes are given in the 3D–drawing in 
Fig. 4.4.  

 
Fig. 4.4  Spring width and thickness and wafer thickness 

   
It is assumed that the deflection of the rigid top plate under a distributed load (spread 
force) is equal to the deflection of a clamped-clamped beam under a centered point load 
(concentrated force, equal in magnitude to the spread force). For the calculation of the 
stiffness (spring constant), the first two cases sketched in Fig. 4.5 are both treated on 
equal footing as the third case. A structure containing N pairs of beam springs each of 
length l, (so a total of 2N springs), is thought to deflect equivalently to N parallel 
clamped-clamped beams of length L = 2l, see Fig. 4.5.  
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Fig. 4.5 The spring configurations 1 and 2 with a spread load on the rigid plate are 
assumed to show a deflection equal to a clamped-clamped beam subjected to a centered 
point load if the total force is the same. 
 
For small deflections, a clamped-clamped beam subjected to a centered point load 
deflects according to 
 /z F k∆ = , (4.3) 
 
in which the stiffness k for prismatic (shape and area of cross section is uniform along the 
length) beams is given by 
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where L is the total length of the beam, which is twice the length of the fabricated beam 
length l. The product EI, called flexural rigidity, contains the plate modulus E, which is 
the Young’s modulus Y modified by Poisson’s ratio ν according to 
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which takes into account the slendering of a beam upon stretching. 
For a trapezoidal cross section (see below left), the second moment of inertia (also called 
“area moment of inertia”) I is given by [2] 
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which is cubically dependent on the thickness h and features symmetrically the lower 
width a and the upper width b. For a rectangular cross-section (a = b) and a triangular 
cross section (b = 0) the stiffness (4.4) reduces to the familiar forms 
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The former (krect) was already encountered in Eq. (2.73). 
 
 
4.1.3 Fabrication process top structures 
 
The main process steps of the fabrication of the top structure are summarized in Fig. 4.6. 
 
Firstly, a monocrystalline (100), double sided polished, p-type silicon substrate receives a 
double sided coating of reaction bonded silicon nitride (SiRN, in stoichiometry: Si3N4) of 
800 µm via Low Pressure Chemical Vapor Deposition (LPCVD). This layer will become 
a mask for the wet-etching process later on. The patterning is done by spinning primer 
(HexaMethylDiSilazane, or HMDS) and 1.7 µm of positive photo resist (Olin 907-17) on 
both sides. On one side standard photolithography is applied. After the photolithography, 
the bare parts of the silicon nitride layer are removed by plasma etching. As the plasma 
also attacks the photo resist layer, care must be taken that it is sufficiently thick and 
firmly baked out (30 min on 120°C). Now one side of the SiRN-layer is patterned. The 
photo resist is removed and reapplied on both sides, after which the other side of the 
wafer is patterned. Obviously, this requires a mask aligner that is able to align a mask to 
the back side of the wafer. This step is sketched (1) in Fig. 4.6. 
 

 
Fig. 4.6 Process steps top structure 

 
Secondly, the springs and structures are formed out of the silicon substrate by wet-
etching in an aqueous solution potassium hydroxide. At first, the wafer is etched through 
vertically (the white spaces in (2) in Fig. 4.6). Prolonged submersion in the etch fluid will 
then lead to the removal of the light grey areas in (2), after which of the centre part of (2) 
only the dark colored areas remain, which represent cross sections of the ultimate beam 
springs. The exact moment of ceasing the etching process determines the thickness of  
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these springs and thus their spring constant. The etching process will be considered in 
somewhat more detail in the next subsection. After the etching process, the structures will 
be provided with a conductor, in our case 100 nm thick aluminum. The conductor is 
sputtered on both sides, which results in the springs being bilayers (actually tri-layers) 
that are vertically mirrored (3). This minimizes mechanical deformations due to changes 
in temperature. 
Some top structures from just after the etching are displayed in Figs. 4.7-4.9. No 
aluminum electrode layers had been applied yet at this stage. Fig. 4.9 already discloses 
the feasibility of the fabrication concept of double springs [6]. 
 

 
Fig. 4.7 One and two-sided suspended structures 

 
Fig. 4.8 Four-sided suspended structures Fig. 4.9 Detail of Fig. 4.8 

 
 
4.1.4  Wet etching of silicon [1,3,4] 
 
The wet-etching of the top-structures, as shortly described in the previous subsection on 
the basis of Fig. 4.6 (2), is done by submersing the wafer in an aqueous solution of 25 
weight percent of potassium hydroxide (KOH), kept at a temperature of 75°C. To 
consider the process of wet-etching in some more detail, let us consider the electron 
configuration of the silicon atom: 
 

Si: 1s(2), 2s(2), 2p(6), 3s(2), 3p(2) 
 
Silicon needs four additional electrons to saturate its outermost shell and is therefore 
disposed to commit to four chemical bonds. In a bulk crystal, the silicon atoms form 
tetrahedra in a face centered cubic (fcc) configuration, similar to diamond. The outermost 
silicon atoms lack neighbors and are on the first place less firmly bound to the crystal  
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lattice and secondly exposed to the etchant. The orientation of this surface with respect to 
the bulk lattice determines the efficiency with which the etching takes place. A surface 
cut with the normal along the (100) direction has front atoms that has only two bonds 
with their backing neighbors and are relatively protruded out of the plane. This ensures 
ample contact opportunity with the KOH and H2O atoms that constitute the etchant. 
Intermediate Si+

4(OH–)4 – combinations are easily formed, which results in a relatively 
high etch rate (defined as the distance the surface recedes per unit time; also called 
etch(ing) speed). Surfaces with a normal in the (111) direction have protruding atoms that 
have three bonds with atoms in that surface. These front atoms are little exposed to the 
etchant, which explains the (much) lower etch rate in this direction compared to the 
(100)-direction (more than a factor of 100).  
The indicated etchant parameters (temperature and KOH concentration), dictated by the 
standardized cleanroom process, are close to optimal for a speedy, yet controlled etching 
process. In general, a higher temperature speeds up the etch rate as it enhances the chance 
a chemical reaction takes place. Concerning the concentration, for the etch rate there is an 
optimum at around 20% (weight) KOH. For the reaction mechanism both OH–-ions and 
H2O-molecules are important. A higher concentration of OH- implies a lower H2O-
concentration, which above 20% reduces the efficiency of the etching process. 
 
 
4.1.5. Wet etching of top structures 
 
4.1.5.1 Etch path 
 
The consecutive phases of the wet-etching process applied to the top structure are shown 
in Fig. 4.10, where the formation of the springs is concentrated on. 
 

 
Fig. 4.10 Cross sections of various phases in the etching of the beam springs 

 
Firstly, a silicon wafer (1) is provided with a double-sided silicon nitride mask (2). In (3), 
the exposed silicon is removed layer by layer by the etchant. Depending on the 
orientation of the mask on the wafer with respect to the wafer flat, the walls of the 
etched-out “lowlands” will make a certain angle. Masks edges parallel and perpendicular 
to the wafer flat (the straight edge of a wafer) will result in an etch angle ζ of 54.74° to  
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the horizontal plane in case of (100)-oriented wafers24. The slopes of these walls are hard-
to-etch (111)-surfaces of the crystal. This implies that etch areas that are too narrow will 
practically stop being etched; in other words, the wafer will not completely etch through 
in vertical direction. This dictates for example a minimum distance at which neighboring 
parallel springs should be designed, which depends on the wafer thickness. For a standard 
100 mm diameter wafer of 500 µm thick, areas to be etched through should be at least 
approximately 350 µm wide. In (4), the wafer has just been etched through, from which 
solid bars result. The corners are exposed most to the etchant and are especially a target 
for the etching. Continued etching will slimmer the bars (5), which will be etched through 
completely if the original mask strips are sufficiently narrow. As again, the etching will 
meet (111)-surfaces, which will almost stop large masked areas from being under-etched. 
When the bars are etched through, the top and bottom springs are finally separated, after 
which protracted etching will thinner the springs as indicated in (6). This etching process 
is illustrated in 3D once more in Fig. 4.11. 
 

 
Fig. 4.11 Two phases in the etching process. Dark represents the silicon nitride mask, 
light represents the silicon substrate. The drawn thickness of the silicon nitride layer has 
been exaggerated with respect to the silicon. 
 
The solid bar, which in Fig. 4.11 protrudes from the frame, is etched through, forming 
two springs. The continued etching will dig in the frame silicon as well, but stop at some 
extent (north east of Figs. 4.11). It is reminded that beams of different widths will 
consequently also have different thicknesses. As the etching time will be the same, wider 
beams will lag behind in thinnering and narrower will be ahead.  
 
A detailed cross section of the originally intended spring etching process is provided by 
Fig. 4.12: 

 

                                                 
24 If straight, vertical walls are desired, the mask edges should be designed with an angle of 45° 
with respect to the flat of (100)-wafers. This direction will etch quickly however, and it should be 
borne in mind that under-etching underneath the SiRN mask starts immediately after submersion, 
instead of only after vertical etch-through. 
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Fig. 4.12 Cross section of spring etching process 

 
Black arrows indicate the “path length” of the etching, which starts with a vertical 
etching of the wafer, is continued by a slimmering of the resulting bar, after which the top 
and bottom beams become separated and ultimately thinnered. Typical etch speeds are 
known from literature [1], which provides an estimate of the total etching time, but some 
checking structures on the wafer are desirable. Something of this kind had not yet been 
included in the original process, but a suggestion for this might look like the following 
(Fig. 4.13):   

 
 

Fig. 4.13 Transparency check for wet-etching 
 
Given that a beam of width a is to have a thickness h. On some part of the wafer, 
preferably not too far from the beam, is designed an etch-gauge beam of a narrower width 
a’. This a’ should be chosen such that as soon as all silicon of this gauge beam is 
removed and thus becomes transparent, the proper beam having width a has attained the 
thickness h. This would provide an easy, initial optical indication of the springs being 
etched just enough. 
 
4.1.5.2 Etch rate monitoring 
 
The etch process, stopped after 420 minutes in total, had been interrupted a few times 
(after 150, 240 and 286.5 minutes) in order to determine the progress and the speed of the 
etch process by a standard microscope. The pictures of Fig. 4.14 are taken after exactly 
2½ hours of submersion. 
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Fig. 4.14 (Left) Top-view after 150 minutes etching of the corner of an L-shaped spring. 
Grey areas are the silicon nitride mask. White areas are depressed, silicon areas, while 
the black edges are the slant walls of these areas, that reflect no light back into the 
camera. The narrow line in the “north west” is a corner-etch stopper. 
(Right) Top-view after 150 minutes etching of a sacrificial cantilever structure next to a 
“ruler” in order to determine the speed of under-etching. The grey areas indicate where 
there is still silicon immediately underneath the silicon nitride.  
 
Given the angle of the slant walls of the depressed areas of the wafer, the depth etched 
and with it the vertical etch rate can be determined from the observed width of the dark 
edges. Fig. 4.14 displays a sacrificial cantilever next to a ruler. It enables to monitor the 
amount of under-etching in time. The results of the derived etch speeds are summarized 
in Fig. 4.15: 

 
Fig. 4.15 Etching progress for the total etching time of 420 minutes. The two parallel 
steep lines indicate the recession of the arrow-shaped structure in Fig. 4.14 (right) with 
respect to the next-lying ruler; the lower one is for the head of the arrow, while the upper 
one represents its ‘shoulder’. The slightly slant line corresponds to vertical etch depth. 
The horizontal line indicates half of the measured wafer thickness (½hw = 260 µm) and 
determines when vertical etch-through is supposed to occur. 
 
From Fig. 4.15 it is seen that arrow head and shoulder recede with similar speeds (fit to 
3.43 and 3.50 µm / min. respectively, in the direction parallel to the ruler and the wafer-
flat). After the total etch time of 420 minutes it is expected that the arrow (originally  
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1000 µm long) is completely removed, which is confirmed by inspection of the 
microscope pictures. For the vertical etch speed there are only two data points (at 150 and 
240 minutes) available, as at the third instant of inspection etch-through had (just) already 
occurred. The line determined by these two points alone would yield the undesirable 
results of a negative time-offset and a just still solid wafer at 286.5 min. By imposing the 
physically plausible condition that the time-offset of the vertical etch is identical to the 
arrow-shoulder (13.5 minutes), etch-through happens just before the inspection moment 
at 286.5 minutes. This time-offset can be explained by the fact that silicon oxide is 
formed during the time that the wafers are out of the solution and exposed to air at the 
moments microscope pictures are taken. This oxide layer had not been removed by a 
treatment with hydrogen fluoride solution (HF) before re-submersion, as a result of which 
the KOH-solution first has to remove the silicon oxide before the proper silicon etching 
can be resumed. The time offset is quite typical for KOH to strip the layer of native 
silicon oxide. Finally, the vertical etch rate is thus established on 0.94 µm / min. This is 
slightly slower than 1.1 µm / min, as in [1]. 
 
4.1.5.3 Prevention of corner under-etching 
 
It is found desirable to place a few comments on the effectivity of the protection of 
corners. It was found that the narrow silicon nitride strips could delay but ultimately not 
prevent the etching of corners, as is seen in Fig. 4.16 
 

   
Fig. 4.16 (left) Under-etching at the corner of an L-spring wth an etch protecting strip. 
Dark areas are open parts of the wafer. Dark grey is silicon nitride with silicon 
immediately underneath; light grey is floating,transparent silicon nitride. 
Fig. 4.17 (right) Under-etching of corners 
 
For springs this is a point of considerable concern, as this can deteriorate or at least 
influence the desired or expected spring specifications, let alone that extended etching 
could remove the complete corner. The strips are effective during the phase of vertical 
etching and during horizontal etching for as far the silicon walls are still convex (are still 
bulging from underneath the mask; cf. Fig. 4.11). However, at this point the narrow strips 
will be under-etched quite quickly and as soon as they become separated, the corner of 
the still solid proper spring becomes exposed (Fig. 4.17). Properly designed L-springs 
and carefully weighted spring widths and thicknesses and tuned widths of the corner 
protection strips are still viable, but some under-etching of the corner always has to be 
taken into account. Sacrificial structures, that are designed to be completely etched away 
just when the desired spring thickness is attained, are certainly safer for L-spring corners, 
although their tree-like design is all but trivial and should be designed with great care as 
well in order to arrive at the desired specifications. 
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4.1.5.4 Results of the etching process 
 
Let us finally take a closer look at the results of the etching process: 
 

1
2

3

4

5

a

b

 
 
Fig. 4.18 Two springs          Fig. 4.19 Zoom on the lower spring of Fig. 4.18 
 
Fig. 4.18 is a Scanning Electron Microscope (SEM) picture of a pair of springs, holding a 
rectangular silicon plate (just inside the scope of this picture, in the north-east). The great 
majority of the springs, like the ones on this picture, came out of the process unscathed 
and well separated. The etching process was terminated after 420 minutes, as by 
inspection all springs were visibly separated, but little could be said about the thinnering 
of the springs. It turned out that, as can be deduced from Fig. 4.19, the thinnering of the 
springs had only just commenced. Let us look to the cross section of the spring in more 
detail, as illustrated in Fig. 4.20: 

 
Fig. 4.20 Cross section of a spring; numbers correspond with areas in Fig. 4.19. Light 
grey is silicon, dark is silicon nitride. 
 
In the order of ascending numbers we first encounter that there is a small recession / 
under-etching of the silicon with respect to the silicon nitride mask, creating a terrace of 
about 10 µm width (1). This is consistent with the etch rate of a (111)-plane compared to 
observed with (100)-plane etching. The western slope of the spring (2), looks narrow in 
Fig. 4.19 because the ‘camera’ is almost aligned with this slope. (3) and (4) are the top 
surface of the spring, which has just begun flattening. In Fig. 4.19 the eastern slope (5) is 
also still visible. Characteristic of this etching process is the abundance of tiny, 
rectangular and octagonal cones or pyramids, (a) and (b) in Fig. 4.19. In [5], a few, not 
mutually excluding, hypotheses are put forward for this. One is that tiny H2-bubbles at 
the surface act like micro-masks, around which the etching continues that leave (111)- 
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planes behind. Another one is that they are in fact SiO2-precipitates. The number density 
and the size of them increase with decreasing etch temperature and KOH-concentration. 
 
A small area on one of the wafers lagged behind in etching, for unclear reasons. This 
provides however a glance at various etching stages in the process. Shown here is a case 
where the beam springs are still connected together as a solid bar (Fig. 4.21) and a case 
where they are just about to be separated (Fig. 4.22). 
 

 
 
Fig. 4.21 Unseparated springs  Fig. 4.22 Almost separated springs 
 
4.1.6 Bottom mask design 
 
The bottom wafer embeds the electrodes that actuate the floating top-electrodes. The 
electrodes are matched to the shape of the top structures, see Fig. 4.23.  

 

  
 
Fig. 4.23 Mask design for bottom wafer. The shown electrode chips match the top 
structures as in Fig. 4.3. A variation to the left design that has been realized is with a 
ring electrode surrounding a center electrode. Both this latter configuration and the 
depicted one were fabricated for p = 0.2 and p = 0.5 (A1:A4 = 1:4 and 1:1), see also 
subsection 4.1.1. 
 
White areas are regions that are lowered with respect to the surroundings that support the 
top frame. These depressions define the capacitive gap. In the lower regions the 
electrodes (dark) and the on-chip paths are located. On the right are the contact (bonding) 
pads that are reachable through the contact holes as remarked on the basis of Fig. 4.3. 
The on-chip paths are routed such that parallel capacitance to the top structure is minimal 
and negligible. 
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4.1.7 Fabrication process bottom structures 
 
The first batch of bottom electrodes was fabricated along the steps illustrated in Fig. 4.24. 
 

 
Fig. 4.24 Process steps silicon bottom wafer  

 
Fig. 4.25 Silicon bottom wafer electrodes 

 
A double-sided polished (100) silicon p-type wafer (1) is provided with 800 nm silicon 
nitride on both sides by LPCVD. On one side, the parts of the silicon nitride are removed 
(photolithography and plasma etching) where the depressions are going to be made (2). 
The bare silicon is oxidized (dry) at 800°C, which will form a layer of SiO2 that partly 
digs in the silicon (3). Treatments with buffered HF and HF 50% will consecutively 
remove the silicon oxide and the silicon nitride, after which just silicon remains with 
lowered areas (4). In (5) silicon oxide was sputtered on the top side. Finally, the 
electrodes (aluminum, 100 nm) are sputtered and patterned (6) by photo lithography and 
wet-etching. The resulting samples are shown in Fig. 4.25. 
The disadvantage of this design however is that the usual AC-readout by the impedance 
analyzer runs into difficulties as the silicon oxide isolation layer permits a capacitive 
coupling from the electrodes to the silicon substrate, thus shortcutting the electrodes in 
AC-mode. However, even proper DC-experiments turned out to be not feasible, as the 
electrodes proved to be genuinely cut short. This is probably due to the aluminum 
sputtering damaging the isolating silicon oxide.  
For the second batch of bottom electrodes, borosilicate glass (Pyrex) substrates were 
chosen. Admittedly the two constituting parts of the ultimate device are then not of 
identical material, but Pyrex is developed to be compatible for wafer bonding to silicon, 
for which similar thermal expansion coefficients is a demand. Even then, as the bottom 
and top parts are clamped, not bonded, there is still some freedom left for differences in 
expansion to occur. The idea is that because of the insulating substrate, no coupling of 
significance can take place as in the previously described case of the silicon bottom 
wafer. The process is summarized in illustration in Fig. 4.26. 
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Fig. 4.26: Process steps pyrex wafer Fig. 4.27: Pyrex bottom wafer electrodes 

(picture) 
 
At first, photo resist is patterned on Pyrex (top). The bare Pyrex is etched by HF, after 
which the photo resist is stripped. This defines the capacitive gap (middle, about 2 µm). It 
should be noted that considerable under-etching takes place, which is however not 
harmful in our case. At last, the electrodes (aluminum, 100 nm) are applied by sputtering 
and patterning (bottom). Some resulting makes are shown in Fig. 4.27. 
 
 
4.2 TEST TOP STRUCTURE 
 
This section describes a preliminary test of a top structure in order to verify the 
capacitance-voltage behavior. By simultaneously measuring displacement and 
capacitance variation as a function of applied dc voltage, parameters like stiffness, 
parasitic capacitance and capacitive gap can be retrieved.  
 
 
4.2.1 Experiment setup, phase shift interferometry 
 
For the detection of the bridge displacement Phase Shift Interferometry (PSI) had been 
invoked. A monochromatic light source (green, λ = 455 nm) is directed vertically 
downward on a slightly tilted surface (the sample). The reflected light will interfere with 
the incident light. This will be alternatingly constructive and destructive in the direction 
of the slope, thus causing a pattern of light and dark stripes, or fringes. Vertical 
movement of this surface will shift this pattern horizontally. This shift is recorded with a 
CCD – camera. An advantage of PSI is that no reference surface is required. By applying 
it at several points, the uniformity of the movement can be determined. More details on 
PSI can be found in [7]. The structure had been provided with 100 nm aluminum on the 
bottom side only. On the top side there were copper elements fixed which were brought 
in contact with the aluminum layer with silver paint. This enabled contacting the bridge 
with an electrical probe from above. A copper strip on a home-made PCB formed the 
capacitive counter-electrode, which matched the top electrodes completely. A firmly 
baked photo-resist layer was used as spacer, cf. Fig. 4.28. The actuation and read-out was  
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by the HP4194A impedance analyzer mentioned in Chapter 3. With this set-up, 
capacitance change and displacement could be measured simultaneously. 
 

 
Fig. 4.28 (Left) Phase shift interferometry set-up; (Right) Actuation pattern. The vertical 
bar is the bottom electrode running underneath two structures simultaneously. The 
MEMS capacitive areas are marked black. The cross-hatched areas indicate parallel 
capacitance. A voltage V is applied between the top and bottom electrodes. 
 
4.2.2 Results 
 
Because the springs were fabricated thicker and thus much stiffer than originally 
intended, only the structure with the long (5 mm) L-shaped springs (see Fig. 4.9) was 
found sufficiently sensitive for the current test and even then only high voltages sufficed 
to detect displacement.  
The preliminary measurements (at room temperature) of the top structures consisted of 
capacitance measurement as a function of voltage simultaneous with displacement 
measurement. The chosen measurement set up allows the closure of all mathematical 
relations and provides figures for the spring constant, the parasitic capacitance and the 
gap distance. This will be discussed shortly. The devices were actuated and read-out 
together: a combined capacitance was measured. Compared to a single device, the 
combined electrostatic force is twice as large. However, also the stiffnesses of the 
individual devices add up. Hence the displacement of either structure is the same as in the 
case that only a single structure would be actuated. The voltage is swept from –40 V to 
+40 V. Figure 4.29 shows a curve from the C(V) analysis of two sensors of the type in 
Figure 6c simultaneously.  A parabola has been fit through the measurement points. 
 
The displacement has been determined by green light (455 nm) phase interferometry. The 
fringe shift provides an estimation of the vertical movement of the test structure upon 
actuation. The unactuated measured capacitance Cm0 is the sum of the test structure 
capacitance Ct and the parasitic capacitance Cp (assumed parallel to Ct).  These are related 
to the unactuated gap z0: 
   

0 0 0/m pC C A z− = ε , (4.8) 
 
with A the capacitive area of the test structure and ε0 = 8.85·10–12 F/m the permittivity of 
the vacuum. The second relation is the force balance (see also Eq. (2.7)): 
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Figure 4.29. Capacitance measured versus voltage together with a quadratic fit 
A built-in voltage of a magnitude of about 1 V has moved the curve a little to the left. This 
we expect to be due for the greatest part to the difference in work function of the 
electrode materials (4.20 eV for Al-(100) and 5.10 eV for Cu-(100) [8]). 
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∆z (>0) is the change in gap height when a voltage V is applied. For this, the 
interferometry was invoked. For 40 volt this gave 57 nm. Thirdly, for small 
displacements the force balance (4.9) can be simplified to yield a parabolic relation 
between capacitance and voltage. The quadratic coefficient α relates capacitance, gap 
height and spring constant by 
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and is taken from the fit. Combining Eqs. (4.8), (4.9) and (4.10) determines the spring 
constant on 6.9 kN/m. This is considerably larger than the expected value of 2.7 kN/m. 
This is discussed in the next subsection 4.2.3.  
The effective gap height comes out at 12 µm, which is also a lot higher than expected (5 
µm, the thickness of the photo resist spacers). For this discrepancy no conclusive 
explanation has been found. Finally, the parasitic capacitance Cp came out on 8.4 pF. 
From the design (see also Fig. 28 (right)) it was expected that the parallel capacitance Cp 
would be 64% of the total capacitance. The copper electrode also runs underneath parts 
of the rigid frame, which also has aluminum. From a total capacitance of 14.3 pF, Cp 
would then amount to 9.1 pF. This shows that the experimentally derived value is 
conform expectation. Using the derived gap and the empiric value for the spring constant, 
the pull-in voltage (Eq. 2.14) can be calculated. Recapitulating:  
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Inserting the quantities yields Vpull-in = 225 V. Connecting the device to a high-voltage dc 
source enabled optical observation of pull-in, which occurred close to 300 V. 
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4.2.3 Spring constant anomaly 
 
The spring constant k of the two test structures together is calculated by (see subsection 
4.1.2) 
 3

3
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k

l
= . (4.12) 

 
Inspection (Figs. 4.19 and 4.20) motivated to assume the cross-section of the beams to be 
triangular. N is the number of beam spring pairs (N = 8 for the two structures together).  
E is calculated with Eq. 4.5. In the relevant direction, Young’s modulus Y is 168 GPa and 
Poisson’s ratio ν = 0.065 [9]. In this case, Poisson’s ratio has little influence. For the 
length of the springs, we have L = 2l = 2 × 5 mm. The width of the springs was designed 
to be 200 µm. In subsection 4.1.5.4 however, it is shown that underetching of the silicon 
in the (111) direction reduces this by about 10 µm from each side. A width a = 180 µm is 
therefore taken. Finally, assuming a slope angle of 54.74° implies a thickness h = 122 µm 
for a triangular cross section. Inserting these parameters gives k = 2.7·103 N/m. This is a 
factor of two-and-a-half too low compared to empiricism. However, after taking a close 
look at the L-spring samples (Fig. 4.30), it was noticed that the springs still had vertical 
interconnections in the corners of silicon columns (Fig. 4.31). This entails that the 
effective length of the spring is decreased by 20%, which ‘upgrades’ the spring constant 
by a factor of (0.8)–3 ~ 2 to 5.4·103 N/m, which matches the experimentally determined 
spring constant to roughly 20%.  
 

 
Fig. 4.30 L-spring structure, here with aluminum.   Fig 4.31 Interconnection between  

           springs in L-shaped structure (SEM).  
 
 
4.3 MECHANICAL SAMPLE CHARACTERIZATION 
 
In the previous section the stiffness of the springs has been derived with an indirect, 
quasistatic experiment. In this section, the stiffness will be obtained by the more direct 
and well-known method of resonance measurements. The experiments presented in this 
section arguably extend somewhat beyond this primary goal by exploring the dependence 
of resonance parameters on bias voltage and ambient pressure, though the former 
dependence is still valuable for more accurately determining the intrinsic spring constant. 
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4.3.1 Sample description  
 
In this sub-section, the samples used are described. This is done separately for A) Top 
structure and B) Bottom structure. 
 
A) Top structure: 
 
The resonance measurements are preferably done on samples with a simple configuration 
and simple springs. More complicated structures, like the L-shaped structure in Fig. 4.30, 
may introduce hard-to-evaluate contributions (vibration modes) to the overall signal. The 
sample shown in Figure 4.32 meats these requirements.  
 

 
Fig. 4.32 (Left) Basic top structure, here still without aluminum electrode, which had 
been applied on one side only in the resonance measurements presented in this section. 
The block area measures 4.4 × 1.2 mm². The two pairs of beam springs are clearly 
visible. In the top, a very narrow nitride beam, used for corner etch delay, can be 
discerned with some difficulty. 
 
For the inertial (dynamic) resonating mass, the gravitational mass of the suspended 
structure is calculated by its geometric volume Ω = 4.4 × 1.2 × 0.52 mm³ and the mass 
density of silicon ρSi =2330 kg / m3. Hence m =  Ω × ρSi = 6.40 mg. The mass of the 
springs, the thin silicon nitride layers and the aluminum layer have been ignored, as well 
as the fact that because of the etching process the vertical walls of the massive block are 
not straight but rather concave. This is drawn in Fig. 4.4 and can be observed in Figs. 
4.22., 4.30 and 4.39. The two neglected contributions may partly cancel: the former is 
additive, the latter is subtractive. The stiffness of the suspension is again calculated by 
Eq. (4.12), see also subsections 4.1.2 and 4.2.3. As before, triangular cross-sectional 
springs are assumed. The number of pairs N = 2, while the lower width a is taken to be 
180 µm, as under-etching is estimated to have eroded approximately 10 µm from the 
designed 200 µm on both sides, see figures (4.19) and (4.20). The thickness h = 127.3 µm 
is derived from this width and the etching angle ζ of 54.74° (h = ½a tan ζ, see sub-
subsection 4.1.5.1, Fig. 4.12). This results in a spring constant k = 10.46 kN/m. The 
contributions of the silicon nitride layer and the aluminum layer are ignored. The former 
layer thickens the springs with ~ 0.8 µm and would therefore increase the stiffness by a 
percent or two. The four nitride strips for corner under-etch delay combine to weigh in 
about 1 mN/m. Being a factor of 107 lower compared to the (main) springs, they play 
absolutely no role. 
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B) Bottom structure: 

 
Fig. 4.33 Bottom electrodes structure used in this experiment series (picture). Lying on 
top of a Pyrex substrate (not visible), their shadows are cast on the underlying white 
surface.  
 
For the given configuration, the effective (series) capacitive area (see subsection 4.1.1) is 
calculated As = 0.71 mm², and has a partial area coefficient of p = 0.2. The electrodes are 
in an area that is lowered by 1 µm with respect to the bottom sample edges supporting the 
frame edges of the top structure. However, over the length scales of the frames (3.6 cm), 
wafers can vary in thickness and be curved. These factors introduce an uncertainty in the 
gap of a maximum of a few µm, which makes the gap and therefore the capacitance an a 
priori unknown parameter.  
 
4.3.2 Single peak characteristics 
 
The locus plot of a narrow-band frequency sweep of the admittance of the sample 
configuration described above is presented in Fig. 4.34. The original data consisted of 
absolute impedance |Z| and phase θ, from which the conductance G and the susceptance B 
have been derived by G = |Z|–1 cos θ and B = –|Z|–1 sin θ.  

 
Fig. 4.34 Locus plot of admittance at 40 V bias voltage (5800 Hz ≤ f ≤ 6500 Hz). 
Conductance G and susceptance B are in units of nanoSiemens (nS).  Arrows indicate 
ascending frequency. The encircled point is at f = 6037.5Hz and is very close to series 
resonance frequency. The quality factor is not sufficient for intersection with the B = 0 
axis. We also observe that the locus plot is not exactly circular but is flattened by about 
10% with respect to the horizontal direction. This is indicative for a damping that is not 
constant with frequency. The small bump in the ‘west’ part of the circle is probably due 
to a co-resonating structure, see below. 
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In Fig. 4.35 the conductance versus the frequency is shown. The black dots are fitted 
according to the theory described in section 2.4, where a small vertical offset in the 
conductance function has been allowed in order to reach optimal fitting of the peak. This 
offset could be caused by a small (additional) phase shift in the primarily capacitive 
circuit. The small bump to the right of the main peak is probably to be ascribed to a co-
resonance. It can be seen from for example Fig. 4.3 that the frame contains another 
structure that is expected to have a similar mass and a similar spring constant and 
consequently a similar resonance frequency. The grey data around this feature in the 
graph have been omitted from the fitting procedure. They are considered to be too much 
influenced by the co-resonance at around f = 6250 Hz. 
 

 
Fig. 4.35 Conductance (nanosiemens) vs. frequency (Hz) around the fundamental 
resonance frequency for Vbias = 40V. The small gray dots between 6070 Hz and 6400 Hz 
have been omitted for the fitting (thin line). The bump that these data trace out is 
probably due to a co-resonating structure.  
 
From the fit a series resonance frequency of fs = 6038.5 (±1) Hz = ωs/2π has been 
deduced and peak width of ∆f = 38.6 Hz, combining to a quality factor of Q = 156.5. 
Assuming a mass of 6.40 mg, this frequency would imply a dynamic (or 
electromechanical) stiffness KEM = 9213 N/m. This is a bit lower than was calculated in 
subsection 4.3.1 (10.46 kN/m), but still the agreement is quite good. In fact, the intrinsic 
(mechanical) stiffness k should be somewhat higher because of the coupling between the 
electric and mechanical domain, see section 2.1. From the peak characteristics, the 
parallel lumped elements R, L and C can be deduced, which result in R = 16.2 MΩ,         
L = 66.7 kH, C = 10.4 fF. Though not as dramatic as stated in section 2.4, still it’s 
especially the inductance assuming quite an exotic value.  
 
 
4.3.3 Bias dependent resonance 
 
Because the capacitive gap is a priori unknown, the measurement is to be repeated for 
different bias voltages, see Fig. 4.36. This is done for voltages from 20 to 40 V. We see 
that the height of the conductance peak gets lower when the dc bias voltage decreases. At 
zero voltage, no resonance at all can be seen. The reason is that the transduction factor Γ 
would then vanish, cf. Eqs. (2.103) and (2.119). We see that for higher voltage, the  
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resonance frequency decreases. It is derived that this is conform what can be expected. 
According to expectation, higher bias voltages decrease the dynamic resonance 
frequency. By combining 
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(see section 2.1 ) the dependence of the gap z on the bias voltage V is taken into account. 
 

 
Fig. 4.36 Fits of conductance function for data at 20 V (lowest peak) to 40V (highest 

peak) bias. 
 
For easier reading, let us introduce the parameter Λ, defined as 
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where terms of order in Λ higher than 2 have been neglected. ωs² has been fit with          
c1 + c2V2 + c3(V2)2 in the variable V² in Fig. 4.37. 
Comparison of the fit with Eq. (4.16) yields and over-determined problem, as three fitted 
parameters (c1,2,3) are competing for two parameters in Eq. (4.16) (k/m, Λ). The intrinsic 
mechanical (damped) resonance angular frequency ω0² = k/m = c1 is determined on 1459 
krad²/s². Inserting the mass of 6.40 mg in Eq. (4.16) yields a spring constant of k = 9335 
N/m.  This can be said to be in quite good agreement with the calculated value of 10.44 
kN/m. The latter value could be tuned down a bit if one realizes that the assumption of a 
triangular cross section leads to an over-estimate of the stiffness, because close inspection 
of the springs shows that the top of the triangle is already a bit flattened. 
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Fig. 4.37 Fit of dependence of series resonance on bias voltage. The points lie on a 
straight line to very good approximation, though the fit allowed for a curvature, which 
turned out upwards, as expected.  
 
This misestimated spring thickness weighs in cubical, so small errors manifest easily in 
the result. Furthermore we observe that a bias of 40 V (cf. Fig. 4.36) alleviates the 
intrinsic stiffness by 122 N/m, which is a reduction by 1.3%. The main objective of the 
resonance experiments has thus been achieved: Determination of the spring stiffness, 
which agrees satisfactorily with prediction. Calculation of the Λ–parameter additionally 
yields the capacitive gap in these series and can be done from the fit either by –c2/c1 or 
2c3/3c2, which must lead to incompatible values. Of these two the former was chosen, as 
the Λ² term in (4.16), associated with c3, contributes only a few ppm, which would 
require ωs(V) to be determined with considerably higher accuracy. Given the fitted spring 
constant and Λ = c2/c1 = 8.11·10–6 V–2, we obtain a capacitive gap z0 = 4.4 µm, 
considerably greater than designed (1 µm). For the record, 2c3/3c2 gives Λ = 5.7·10–6 V2, 
positive value, which entails upward curvature as expected and is even quite close to the 
‘correct’ Λ. However, this latter result should be considered fortuitous rather than 
enforced by experimental accuracy. The variation of the gap with voltage is so small for 
these structures that this effect is hardly noticeable, in spite of its cubical influence. 
With the calculated parameters, the transduction factor (cf. Eq. (2.103)), written in a form 
that takes a bias-dependent gap into account, 
 
 3

0 ( )kz V VΓ = Λ + Λ , (4.17) 
 
would for V = 40 V come out on Γ = 13.4 µC/m. Using the values for L and C from Fig. 
4.36 , this would predict a mass m = 11.9 mg and a dynamic stiffness KEM = 17.2 kN/m, 
both over-predicted by the same factor 1.85. The results would agree for a transduction 
factor Γ that is a factor √1.86 = 1.36 smaller, or if the maximal conductance would have 
been higher by a factor of 1.86. The complete results for the bias dependence of peak 
characteristics and its derived parameters are summarized in Table (4.1). 
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V (V) fs (Hz) χ (nS) ∆f (Hz) R (MΩ) L (kH) C (fF) Q Γ (µC/m) M (mg) K (N/m) D (g/s) 

20 6070.1 16.04 45.0 62.3 221 3.11 135.0 6.63 9.69 14.10 2.738 
25 6062.8 24.18 41.3 41.4 160 4.32 146.9 8.30 10.99 15.94 2.849 
30 6055.7 34.60 39.4 28.9 117 5.91 153.8 9.98 11.64 16.85 2.879 
35 6047.8 47.06 39.1 21.2 86.5 8.01 154.6 11.7 11.79 17.02 2.896 
40 6038.5 61.86 38.6 16.2 66.7 10.4 156.5 13.4 11.95 17.20 2.896 

 
Table 4.1 Bias dependence of resonant parameters and derived quantities 

 
Concerning the mass and the dynamic stiffness as derived from the motional inductance 
L and C respectively, it is observed that they approach m = 6.40 mg (a priori calculated) 
and k = 9213 N/m (fitted) increasingly better for declining bias voltages. For V = 20 V, 
the factor with which they deviate from these values is still the same for both parameters, 
but is smaller for decreasing voltages. This would entail either an incorrectly described 
dependence of the transduction factor Γ on the bias voltage, or, damping (affecting          
χ ≡ Gmax = 1/R) has been poorly taken account of. A complete discussion of this latter 
topic would be far beyond the topics of this thesis, though a short digression is given in 
the next subsection. AI final issue that is not clearly understood is the increase of the 
quality factor with increasing voltages. Higher voltages lead to a lower stiffness and 
hence quality factor, at least for a constant damping factor. In the table this factor is 
indeed quite constant, but if it is downscaled with the same factor as M and K ‘should’ 
be, it is larger at lower voltages. The reason behind this supposed bias dependence of the 
damping factor is not understood. 
Additional to these resonance measurements, a few C(V) measurements have been 
performed. As these devices are very insensitive, capacitance changes are very small, but 
measurable. 

 
Fig. 4.38 C(V) curve, read out at 1 MHz. 

 
If we allow for a small parasitic capacitance, inserting in the system of equations 
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the fit parameters C0 = 1.077 pF and α = 2.54 aF/V², yields a gap z0 = 5.4 µm; somewhat 
larger than but not grossly inconsistent with what had been deduced from the resonance 
measurements. It has to be noted that the parasitic capacitance here is  
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–0.09 pF, small but, more importantly, negative. For this curvature to be possible, the 
capacitance should have been at least 10% larger. A possible explanation for this 
disparity between curvature and capacitance is non-parallel electrodes (see subsection 
2.5.1) or, more general, a non-uniform gap. 
At last, a 1 kHz-1MHz frequency sweep of the impedance had been done. For a phase     
θ = –89.2°, the impedance is dominatedly capacitive, which was calculated by                     
CM = (2 π |Z| f)–1 = 1.078 pF (f = 1 MHz, |Z (f = 1 MHz)| = 148 kΩ), consistent with the 
C(V) curve.  
 
4.3.4 Phase error 
 
As stated in the beginning of this section, the admittance characteristics have been 
derived from impedance ( |Z| , θ ) data. Off-resonance, any small error in the phase will 
for a capacitance-dominated impedance (θ ≈ –90°) introduce huge relative errors in the 
conductance G = |Z|–1 cos θ, which can even affect its sign. Only on-peak for resonances 
with a very large phase shift can the conductance be derived with acceptably small 
relative uncertainty. The maximum phases for the resonance varied from θ = –69° for     
V = 20 V to θ = –21° for V = 40 V. In the former case, uncertainty of a few degrees 
introduces 10-20% error in the peak height, while in the latter case errors are in the order 
of 1%. This uncertainty in the peak height has noticeable consequences for the obtained 
values for R, and for the lumped-elements derived mass and stiffness. Furthermore, also 
the lower-parts of the peak are described with increasing uncertainty, which may affect 
the peak width and therefore quality factor and again derived mass and stiffness. Proper 
experiments on resonance should certainly be performed without a translation between 
impedance and admittance; either resonance properties should somehow be derived from 
impedance characteristics (for the series resonance frequency the maximum in the phase 
is a reasonable alternative; at V = 40 V, θ(ω) = θmax for ω ~ 6050 Hz, 0.2% higher than 
fitted from G ), or admittance should be measured immediately. However, it is expected 
that this phase uncertainty has negligible effect on the frequency of the maximum 
conductance (series resonance), which was used to determine dynamic and intrinsic 
stiffness and capacitive gap. 
 
 
4.3.5 Damping 
 
The experimental series have been performed in air of a constant pressure 0.9 mbar. 
Though the probe station allowed for pressures below 10–4 mbar after protracted 
pumping, technical issues prevented this vacuum to be maintained with pumps switched 
off, which had to be because of otherwise introducing too much noise in the frequency 
measurements. A few possible damping sources will be mentioned. 
It can be shown that a small damping force linear to the velocity has the effect of not only 
decreasing the amplitude of resonance (which would actually become infinite if the 
driving force operates at free resonance frequency), but also decreasing the frequency of 
free resonance, which may lead to the interpretation of the inertial (dynamic, resonating) 
mass Mdyn becoming larger than the gravitational mass m by Mdyn = m(1 + Q–2/4). The 
origins of damping linear in velocity are manifold, for example (small) losses via the 
springs, but more notably the viscous forces in the surrounding fluid (air). These viscous 
forces have not been studied further in this context, but are expected to dominate 
velocity-square dependent drag forces that are present when an object moves with high  
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velocity through a fluid and creates a pressure build-up in the front, a vacuum behind and 
turbulences. To get a feel for the expected amplitudes and velocities, let us recapitulate 
the amplitude of a damped oscillator (denoted ‘Z’ rather than the common ‘A’, to 
distinguish from area) under a harmonic driving force F = F0eiωt: 
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where m is the intrinsic mass, ω0² = k/m is the damped resonance frequency and D the 
damping coefficient. For ω = ω0 and Q2 = mk/D2 >> 1 (small damping), Eq. (4.19) 
reduces to very simply 
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Assuming that D in Table (4.1) is overestimated by the same factor as K and M, this 
would entail D = 1.56 g/s. 
The voltage amplitude has been 0.5V, which for a capacitive surface of 0.71 mm² and a 
gap of 4.4 µm would deliver a force amplitude F0 = 41.3 nN. At 40 V bias the motional 
amplitude would then become A = 0.7 nm (note that applying a static bias voltage of 0.5 
V would lower the plate by only 5 pm, about one percent of the diameter of an aluminum 
atom in the top electrode and about a factor of 140 smaller than the amplitude). 
Equating maximal kinetic energy with maximal mechanic energy by ½mvmax

2 = ½kZ2, we 
find vmax = Zω0 = F0/D = 30 µm/s. At these very low speeds viscous forces are expected 
to dominate velocity-square drag. The maximal Reynolds number Re = ρ vmax L/η with 
mass density 1.2 g/m³ (air at pressure 0.9 mbar), speed 30 µm/s, length scale (for which 
the structure diameter was taken) L = 5 mm and air viscosity (room temperature)             
η = 18 µPa·s is Re = 10–5, indicative for the viscous regime. This becomes explicitly 
apparent if the forces Fvisc = Dvmax and Fdrag = ½ ρ vmax

2 Cd A (Cd = drag coefficient = 
1.28 for a flat plate; A = area) are compared. The former closely equals the maximal 
driving force, while the latter is many orders of magnitude smaller. 
 Acoustic damping starts affecting the resonance if the acoustic wave length     
λac = vsound/fs  = 5.6 cm is smaller than the dimensions of the resonating structure, which is 
obviously not the case here. 

At last, squeezed film damping can be of importance. In the ‘worst case’, the 
volume of gas trapped underneath the resonating structure is adiabatically compressed 
with no outflow of heat or gas molecules. From equilibrium position to down-state takes 
1/(4fs) = 40 µs. For adiabatic compression PΩγ = constant applies (P = pressure, Ω = 
volume = area × gap, γ = adiabatic ratio = 1.4 for air), so that after compression because 
of the pressure difference between underneath and above the plate a force  

 
 

0

sq

AP
F Z

z

γ
= , (4.21) 

 
which would outweigh the maximal driving force by a factor of 2.5. The fractional 
quantity could be interpreted to be a spring constant that contributes about 150 N/m, 
having the effect of letting the downcoming plate ‘bounce off’ the trapped gas layer and  
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pulling the uprising plate back. It is of a magnitude about equal to the modification the 
electric coupling applies to the stiffness at 40 V. The validity of this crude squeezed film 
damping model and the estimates of its effects hinge critically on the outflow of gas 
during compression of the trapped gas film; the high value calculated for Eq. (4.21) 
would let one suspect of a gross overestimation. There are many theoretical treatises on 
this subject that have right the description of this flow as central object of study, for 
example [10]. The squeezed film effect is preferredly formulated in terms of quality 
factors that contribute to damping (energy dissipation). In the context of damping it has 
to be noted that the compression process is invariably assumed to be isothermal rather 
than adiabatic (which would save the γ factor in Eq. (4.21)), so energy from the 
oscillation really irreversibly dissipates into the surrounding medium, underlining the 
damping characteristics of squeezed film, on top of the modification to beam stiffness.  
A thorough study of the squeezed film effect would stretch the scope of this thesis too 
much. On a differently shaped sample, a single pressure-dependent experiment has been 
performed though. This sample, with the shape of a four-leaf clover, will be described in 
more detail in the next section, (4.4). The most important differences with the above 
described sample is that the clover sample is suspended on four beam spring pairs (rather 
than two; but of identical geometry) and has a considerably higher mass (23 mg). In a 
pressure range between 1 and 60 mbar the quality factor dropped roughly linearly from 
48 to 19, indicating highly increased damping. Though damping is expected to slightly 
decrease the resonance frequency (though for Q ~ 20 less than a few per mill; a few Hz), 
it was found to increase by about 6%, for which an increased spring constant has to be 
accounted. Meanwhile, though Eq. (4.21) is now found to be a considerable 
overestimation of the effect of the squeezed film, the abundance of thorough studies of 
this effect in literature testifies to its importance to experiments optimized for resonance, 
which is underlined once more by this single experiment that not even optimized for his 
purpose.  
 
 
4.4 TEMPERATURE DEPENDENT EXPERIMENTS ON DEVICE-
LEVEL CHARGING EFFECTS THROUGH C(V) CURVES 
 
This section enters the territory of device level effects related to charge trapping for the 
double beam samples. Though the structures encountered so far showed satisfactory 
behavior (that is: functioning, and in satisfactory concordance with expectation), it was 
deemed desirable to enhance sensitivity. This is required if one wants to study the 
possibly small effects of charge trapping. Sensitivity can be increased by thinnering the 
springs. Such a step would bring the structures better in accordance with the original 
design, because until this point a considerable discrepancy existed between design and 
product. In subsection 4.4.1 the sample used is mechanically characterized and tested for 
its immunity for the thermal variation in the large cryogenic temperature range           
(100-300 K) in which the C(V)-measurements are to be carried out. Subsection 4.4.2 will 
focus on the built-in voltage, the C(V) parameter that is most directly associated with 
device level charge trapping effects. 
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4.4.1 Temperature dependent sample characterization 
 
In order to gain sensitivity, some samples underwent an additional wet-etching step for 
further thinnering of the springs. In due course, the vertical columns interconnecting the 
corners of the L-spring structure described in section 4.2 were removed. Care was taken 
that aluminum was (re-)applied on both sides in order to minimize thermo-mechanical 
deformation during cooled experiments. The experiments described in this section were 
performed on the clover-shaped structure shown in Fig. 4.39. This structure has a large 
capacitive area compared to the other structures, which was countered by a bottom 
electrode to be an equivalent (series) area of As = 2.8 mm2. A structure of similar shape 
has been used by [11] serving as an accelerometer in order to have a large mass and still 
relatively long springs in a compact structure. The mass of the structure presented in the 
current sub-section is calculated to be 23 mg. The suspension is relatively stiff because of 
the four pairs of springs that are relatively short (2.0 mm), especially compared to the L-
springs sample described in section 4.2, but as already described in sub-subsection 
4.1.5.3 that particular sample suffered from under-etching of the corners which entails 
additional risk to the mechanical stability of the structure. The clover structure is quite 
rigid and the thinnered springs proved to be sufficiently complying.  
 

  
Fig. 4.39 Clover structure Fig. 4.40 Bottom electrode 

 
The bottom electrode (Fig. 4.40) shows a central electrode and four interconnected clover 
leafs. The electrodes match the top structure (Fig. 4.39). The leads between the bottom 
clover leafs are laid such that the springs of the top structure do not electrically couple to 
them. 
The clover structure used in the pressure dependent experiment mentioned in subsection 
4.3.5 still had the original springs. Resonance measurements yielded fs = 4980 Hz, from 
which a spring constant of 22.6 kN/m is deduced, a bit higher than twice the stiffness of 
the structure used for the bias dependent resonance measurements (section 4.3), which 
had two pairs of identically designed beam springs, rather than four. Some C(V) - curves 
of that sample had been recorded as well, which yielded u = α / C0

4 = 1.3·1028 F–3V–2. 
This quantity (“intrinsic sensitivity”) normalizes the curvature to the capacitance and thus 
facilitates comparison between different structures concerning sensitivity, which is 
reciprocal to the stiffness of the suspension. For clover structures that underwent about 60 
mins. of additional KOH wet – etching, this quantity increased by roughly a factor 30 to 
about u = 0.4·1030 F–3V–2. An example of a pair of additionally etched springs is shown in 
Fig. 4.41. 
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Fig. 4.41 Pair of thinnered springs. In this picture a geometrical construction can be 
made to estimate the height of the ridge along the center line of the lower beam. The 
distances AB and BC are known. The first provides the scale factor of the vertical 
dimension in the picture. DC can then be determined, which is twice the required height. 
 
From construction, the spring height h was estimated 46 µm. This predicts k = 1348 N/m 
and fs = 1218 Hz. Unfortunately, initial resonance experiments for this structure failed to 
provide useful results. Though ‘something happened’ in the neighborhood of the 
expected resonance frequency, a well-shaped resonance peak was lacking. Consequently, 
the prediction of the stiffness from construction cannot be corroborated by empiricism. 
From the C(V) measurements, both the gap and the parallel capacitance are a priori 
uncertain parameters, so the isolation between experiment and theory remains in this 
case. No reason is found for this behavior. The top structure has a complicated shape, 
which potentially introduces several resonance modes, but this is an insufficient 
explanation, especially because with a similar structure satisfactory resonant behavior has 
been observed in a high vacuum system (section 4.5). 
Nevertheless, series of C(V)-curves could be recorded in a large cryogenic temperature 
range, resulting in a meaningful inventory of the thermal dependent sample 
characteristics. The clover capacitance throughout a warm-up stage during the 
measurement series is shown in Fig. 4.42 and compared with an aluminum bridge HF 
sensor (section 3.3). The two devices have coincidentally comparable capacitance values. 
 

 
Fig. 4.42 Capacitance during the warming up phase of a clover sample and an aluminum 
bridge (section 3.3) 
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Clearly, the clover sample proves much more stable (variations in the order of 1%) than 
the aluminum bridge (more than 20% variation, compared to initial value) even in a not-
stabilized temperature. The stability of the capacitance indicates that deformation of the 
top electrode is very small. Meanwhile, Table 4.2 displays the aforementioned quantity   
u = α / C0

4, which is a measure for the reciprocal stiffness of the device: 
 

T (K) 50 100 200 300 
u (1030 F-3V-2) 0.433 0.434 0.425 0.389 

 
Table 4.2 Intrinsic sensitivity for different stabilized temperatures 

 
The stability of the intrinsic sensitivity with temperature testifies that changes in stress 
are small during this range. The reader is referred to subsection 3.3.3 for a dramatic 
example of a temperature dependent spring constant (aluminum bridge sample), which 
varied for almost 2 orders of magnitude in the 4K-300K – range. 
 
4.4.2 Built-in voltage 
 
Long series of C(V) measurements were parabolically fitted from which built-in voltages 
were deduced [12]. Temperature, ranging from 100 K to 300 K, was stabilized during the 
measurements series. Ambient air pressure could be maintained at about 10–3 mbar.  
The drift in the built-in voltage was tempted to enhance by taking asymmetrical C(V)-
curves (instead of symmetrical ones), that is -40 < V <  0 or 0 < V < 40. This keeps the 
electric field in the same direction during the whole series, only varying in magnitude, 
like was done for the aluminum bridge samples in section 3.3.  

 
Fig. 4.43a (left) Built-in voltage for negative half-curves 
Fig. 4.43b (right) Built-in for positive half-curves 
 
In the above presented measurement series (Fig. 4.43) a triangular voltage is applied 
(voltage running from 0 to ±40 V and back again). Thick dots represent built-in voltages 
(or ‘curve minimum shifts’) fitted from curves of ascending voltages, thin dots represent 
descending voltages. Horizontal is the time, spanning 128 minutes. From these 
measurements the last 80 (out of 120) curves are used to fit a (linear) drift rate. These 
measurements have been repeated for 200 K and 100 K, which showed decreasing drift 
rates with decreasing temperatures and drifted linearly during the complete series. 
Summarized in table 1 are the 300 K, 200 K and 100 K results, consisting of the built-in 
voltage together with their spread along a linear fit, and the drift rates. 
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Temp Quantity -40 < V < 0 

ascending 
-40 < V < 0  
descending 

0 < V < 40  
ascending 

0 < V < 40 
descending 

300 K Vbi -0.51 ± 0.057 -0.86 ± 0.051 -1.62 ± 0.050 -2.21± 0.053 
 dVbi/dt -0.258 -0.216 0.282 0.282 
200 K  Vbi -2.15 ± 0.21 -2.14 ± 0.17 0.51 ± 0.23 0.22 ± 0.18 
 dVbi/dt 0.342 0.156 -0.180 -0.060 
100 K Vbi -2.08 ± 0.078 -2.11 ± 0.115 2.44 ± 0.21 2.34 ± 0.22 
 Vbi/dt 0.035 0.041 -0.099 -0.049 
Table 4.3: Built-in voltages (V) and drift rates (V/m) 
 
As discussed in section 2.3 and Chapter 6, it is not so much the magnitude of the built-in 
voltage, but rather its instability in time that is found of primary interest, although the 
possibility of the former influencing the latter is certainly conceivable. Previous to each 
measurements series a voltage of 0 V was applied in an attempt to create comparable 
starting values for the built-in voltage, but without success. From Table 4.3 it is clear that 
the magnitude of the built-in voltage drift decreases with decreasing temperature, which 
makes it harder to enforce a synchronization of starting values for the built-in voltage. 
We observe further that changing the polarity of the (unipolar) C(V)-curves changes the 
direction of the drift, which is understandable. However, the sign change between 200 K 
and 300K is less well understood. 
 
The ‘built-in-splitting’ in Fig. 4.43 disappears at lower temperatures. At 200 K the two 
branches are still more or less separated, to become completely entangled at 100 K (Fig. 
4.44). In Fig. 4.45 the built-in voltage is monitored during the warm-up stage mentioned 
above.   

 
Fig. 4.44: Built-in voltage at 100K   Fig. 4.45 Temperature dependence 
of ‘built-in splitting’ 
 
The influence of temperature of short-timed effect of built-in splitting is similar to what 
has been observed from the EMMA samples treated in chapter 3: The effect abates at 
lower temperatures, for aluminum electrodes between 150 K and 200 K, and almost 
disappears completely below 150 K. The suddenness of the (dis)appearance of this effect 
when set on the temperature scale varies somewhat. Especially for the EMMA samples 
quite sharp transitions have been observed. 
Regarding the evolution of built-in voltage in time, a short simulation has been performed 
similar to what is described in subsection 2.3.1, see Fig. 4.46, be it here with an 
alternating voltage sweep between –10 V and 0 V and a spring constant of 3000 N/m.  
The discussion as was held in the mentioned subsection applies here quite well too. 
Again, though the model defects are clear, even this reproduces some important  
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characteristics: Built-in splitting and stabilization of the two levels in time, for ‘negative 
half-curves’ on the negative side. The model does not allow for fixing parasitic charges in 
deep traps, but for a thin oxide like native Al2O3, it is not expected that at room 
temperature large amounts will be remanent in the oxide. This is for an important part 
because, in such thin dielectrics (2-3 nm), the surface charges are very close to their 
images and feel encouraged to recombine with them, although in a ‘high-k dielectric’25 
like alumina, electric fields are weakened relatively much. Nevertheless, quite an amount 
of charge lingers in permanently in the oxide, because the fast bias sweeps does not allow 
for auto-decharging of the oxide. It has to be mentioned though that increasing the 
simulated sweep-period does not decrease the average stable built-in level (not only the 
decharging time, but also the charging time increases); it does however increase the 
splitting. 

 
Fig. 4.46. Fitted Built-in voltages from series of simulated unipolar C(V) – curves. 

 
 
 
4.5 HIGH VACUUM EXPERIMENTS 
 
Another copy of the clover structure was subjected to experiments in a chamber in which 
a vacuum could be maintained considerably superior to the probe station in which all 
foregoing experiments in this chapter had been proceeded. The here reigning pressure of 
5·10-7 mbar potentially decreases the possible influence of ambient conditions on device-
level charge-trapping effects. On the downside, this system did not provide for regulating 
the temperature, in particular no cooling could be supplied.  
The vacuum could be attained only after at least 12 hours of heating, including the 
sample, which was deemed to withstand the conditions. A dedicated vacuum feed-
through provided the electrical connections to the sample. 
 

                                                 
25 High-k dielectrics are characterized by a relatively high dielectric constant (in these contexts 
denoted by k, rather than ε  or ε r) compared to silicon dioxide (SiO2, 3.7). Examples include 
aluminum oxide (Al2O3, between 9 and 10), tantalum pentoxide (Ta2O5, ~25), hafnium oxide 
(HfO2, ~30), which materials have recently entered electronic and semiconductor industry in order 
to reduce leakage currents, that manifest themselves increasingly strongly on with the downscaling 
of processor transistors, now 45 nm. Extreme values are reported for titanates, for example 
strontium titanate (SrTiO3, 310), barium titanate (BaTiO3, up to several thousand) and calcium 
copper titanate (CaCu3Ti4O12, ~104) [13]. 
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4.5.1 Sample characterization 
 
From this copy of the clover sample, usable resonance frequency measurements could be 
drawn. At 1678 Hz there was a sharp peak with Q = 480 (V = 24 V), considerably higher 
than was reached in the milder vacuum of the probe station. For the high vacuum system, 
again parallel capacitance and gap were a priori uncertain parameters, which could be 
resolved by supplementing C(V) recordings with resonance measurements. One 
representative curve out of a series yielded the parameters Vbi = –0.53 V, C0 = 7.10 pF 
and α = 12.3 aF/V2. Because it was considered that, unlike the thick-spring clover 
sample, the bias voltage could have detuned the spring constant obtained from the 
resonance measurement, the system of equations 
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is joined by the dynamic stiffness Kdyn now made dependent on all parameters and bias 
voltage: 
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The relations close for Cp = 4.60 pF, CM0 = 2.50 pF, z0 = 9.9 µm and k = 2571 N/m. 
Comparing the latter value with the dynamic value shows that with hindsight also in this 
case the bias dependency of the stiffness was redundantly taken into account. It is 
however almost a factor of two higher than as guessed from construction, see the 
preceding section. The from these parameters calculated intrinsic sensitivity of                 
u = 0.317·1030 F–3V–2 does not disagree too sharply with typical values encountered in the 
foregoing section. The dissimilarity could be understood if a spring constant of k = 1.8 
kN/m is assumed there. To conclude: the spring constant derived from construction is 
somewhat less consistent with what is derived from measurements, compared to the 
previous section. 
 
 
4.5.2 Built-in voltage 
 
A few series of C(V) - measurements with alternating upramping and down-ramping 
voltage sweeps (±15 V) have been carried out. These series invariably showed a 
relaxation behavior of the built-in voltage, as expected for no preference for one 
particular net polarity was applied in these series. An example is given in Fig. 4.47 which 
shows the first part of a 66 hour measurement series. Only the displayed data, truncated 
after five hours, were used for an exponential fit e–t/τ. Relaxation times τ are typically in 
the order of 2.5 – 3.5 hours for these high-vacuum series. For the clover sample in 
intermediate vacuum (1 mbar, probe station) comparable long-winded C(V) - series had 
been recorded, showing relaxation in just over 2 hours. It has to be noted that the exact 
value of these times depend somewhat on the length of the tail of the data.  The 
differences in relaxation times are therefore not thought to be significant, nor seems built-
in splitting, which is present in both intermediate vacuum and high vacuum, to be 
significantly different. The latter effect does seem to be smaller than what is seen for the 
aluminum HF sensor (section 3.3), namely 0.07 V and 0.2 – 0.5 V (room temperature)  
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respectively. In the former case, the electric field is somewhat lower. Though higher 
actuation voltages are used, the particular configuration of the electrodes lowers the 
reigning gap voltage(s) again and capacitive gaps are larger, all compared with the latter 
case. 

 
Fig. 4.47 Long term built-in voltage measurement. Built-in voltages for upramping 
voltage C(V) – curves are displayed in big dots, whereas small dots correspond to down-
ramping voltage curves. The two branches, spaced about 0.07 V, are fit separately with 
relaxation times of 3.06 hours (upper) and 2.47 hours (lower). 
 
 
 
4.6 CONCLUSIONS 
 
The novel fabrication process applied to the top structure proved to be a feasible method 
to produce the springs as wanted (section 4.1). The resulting top structure devices show 
satisfactory and explainable static capacitance-voltage behavior (section 4.2). Mechanical 
characterization of complete devices (top and bottom electrodes) tested the suspension 
for resonant behavior in agreement with expectation, even if the devices are not 
optimized for vibrational purposes. A disagreement persists concerning the translation 
between electric and mechanical domain, though these results are not crucial for the 
mechanical characterization. (section 4.3). For enhanced sensitivity, some samples 
received additional wet etching treatment. This did work out as intended. The resulting 
devices proved to be considerably more stable in a large cryogenic temperature regime 
than the silicon nitride bridge and the aluminum bridge HF sensors from the EMMA 
project (as described in chapter 3) for the criteria of deformation (related to capacitance) 
and stress (related to C(V)-curvature), thus responding positively to the intentions 
declared in the design of the devices. The intensity of device-level dynamic 
characteristics related to trapped charges (built-in drift, built-in splitting) have been 
demonstrated to wane with decreasing temperature. (section 4.4) within the context of 
aluminum electrodes having its natural thin oxide as dielectric in ambient air pressure of 
10–3 mbar (section 4.4). Some tests in high vacuum (5·10–7 mbar) indicate that the 
ambient air pressure does not have significant change in its potential influence on built-in 
relaxation, but perhaps on splitting. It is thought therefore that at least part of the 
observed built-in effects is intrinsic for the dielectric layer (section 4.5).  
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CHAPTER 5 

 
 

CONDUCTING AFM 
 
 
In Chapters 2-4 theory and measurements of MEMS concerning temperature dependent 
effects of charge trapping on device level are presented. A different approach is treated 
in this chapter. The development of sensitive operation modes of non-contact AFM 
(frequency modulation) has opened the possibility of studying localized charges, with 
high spatial resolution. Section 5.1 follows the development of AFM, zooming in on the 
relevant technique to detect and image individual trapped charges. Relevant quantities in 
this field are provided. In section 5.2 a study is presented demonstrating images of 
trapped charges. For interpreting conducting AFM results it was considered 
indispensible to get a grasp of the interaction strength between the tip of an AFM and a 
sample with a localized charge. An available, widely used model (section 5.3) 
superficially yields satisfactory results, but upon closer inspection has implications of 
which some are quite suspicious. In this chapter, the relevant electrostatic problem is 
recalculated by a newly developed model (section 5.4) and found to predict very different 
results for this interaction. Generally, a much larger interaction strength is predicted by 
the method presented here. Moreover, it is shown in this chapter that the existing model 
contains a fundamental, intrinsic problem. The new “Multi mirror” model is in 
agreement with Finite Element Modeling (section 5.5). Direct model comparisons are 
offered in section 5.6. “Multi mirror” is brought into contact with practical results 
(section 5.7). For a thorough foundation and for the derivations of approximating 
analytical formulas be the reader referred to the Appendix. 
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5.1 PRINCIPLES OF AFM 
 
5.1.1. The family of Scanning Probe Microscopy 
 
The early eighties of the last century marks the beginning of a new era in the field of 
surface sciences, when Binnig and Rohrer announced [1] their invention of the Scanning 
Tunneling Microscope (STM) in 1981. The long coveted, but elusive Holy Grail of 
displaying separate atoms in real space had become reality. Within a year after its 
invention, this technique enabled captioning the Si(111) 7x7 surface [2], hereby resolving 
a long standing debate about its exact structure and properties, which helped to establish 
STM to a total success. STM is the earliest member of what has now become an 
extensive, growing and thriving family of Scanning Probe Microscopy (SPM). All 
techniques falling under SPM are based on sensing the surface of a sample with a small 
probe, specialized, dedicated and sensitive to the physical quantities of the surface the 
experimenter is aimed to map. In this respect, ‘Microscopy’ is unfortunately chosen 
terminology, as this is rather associated with optics, perhaps to be extended with 
Scanning Electron Microscopy (SEM), which uses electrons instead of light as reflecting 
/ refracting substance.26 STM is based on the existence of an electric tunnel current, 
which is strongly dependent on the exact distance between probe and sample surface.  
 
Though STM is not a technique used for the research in this thesis, I will devote below a 
few words to this technique for it contains important principles upon which Atomic Force 
Microscopy (AFM) relies and has evolved from in a natural way: soon after the 
introduction of STM, Binnig realized that for the close distances between tip and sample 
surface significant forces of various nature are present, which inspired him, together with 
Quate and Gerber [3], to the invention and introduction of Atomic Force Microscopy in 
1986. The AFM probe is sensitive to the small interactions between tip apex and a sample 
surface. The probe is attached to a cantilever, which movement is detected and 
interpreted in terms of topography and surface features of different nature. AFM will be 
discussed in a bit more detail below. Since then, many new SPM flavors have been 
added, such as for example Electrostatic Force Microscopy (EFM), Scanning Capacitance 
Microscopy (SCM), Kelvin Probe Force Microscopy (KPFM) and Magnetic Scanning 
Probe Microscopy (MSPM). The latter term is again covering various techniques, of 
which for example Scanning SQUID Microscopy (SSM) [4] recently achieved notable 
successes [5] with imaging the tiny magnetic fields of trapped flux vortices in 
superconducting materials with a resolution of about 2 micrometer. 

                                                 
26 It is a debate about words, but the ancient Greek σκοπέω, “observe”, might actually allow for a 
broader interpretation than “see by eye”. I will leave this case to better versed classicists. 
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5.1.2. Scanning Tunneling Microscopy 
 
Scanning Tunneling Microscopy owes its success to the strong relation between 
(magnitude of) tunnel current and tip, which allows for excellent resolution, in the first 
place in vertical, but also – and very importantly – in lateral direction, see Fig. 5.1. 
 

 
 
Fig. 5.1 Schematic interaction between STM tip and surface (not to scale). The strong 
correlation between tunnel current and separation distance allows for mapping a sample 
surface with atomic resolution. 
 
In order to distinguish separate atoms in the lateral direction, it is imperative that the tip 
atom closest to the surface (the exaggeratedly drawn protruding atom in Fig. 5.1) 
assumes a significant part of the interaction with the sample. For tunneling currents, the 
tip does not need to be exceedingly sharp for this to be the case; the front atom can still 
be relatively embedded in the surrounding material. The tunnel current is small (typically 
0.1-1 nA), but does not at all require highly esoteric electronics to be converted to a 
voltage signal, which is used as rudimentary data. The surface is scanned in raster-like 
fashion and for each point on a lateral (x,y)-grid a topographic height, directly derived 
from the current, is assigned. This provides a 3D surface plot of the sample. In its 
simplest form, the tip senses the surface from a fixed height and the varying current is 
recorded. However, as this risks the tip colliding with the surface in case of a sudden 
protrusion from the surface, the tip height is usually adjusted by piezoelectric elements, 
dictated by a feed-back circuit tuned to keep the tunnel current constant. This way, the tip 
is maintained at a constant distance from the surface. The voltage over the piezocrystals 
provides the topographic information and hence serves as data output. This feed-back set-
up allows for recording larger ranges of height differences and does not require the 
sample surface to be extremely parallel to the plane traced out by the raster-scanning tip 
apex. 
 
 
5.1.3. Atomic Force Microscopy 
 
Until today, the resolving capabilities of STM are unsurpassed and its easy operability 
has helped it to be a standard instrument in the present day surface scientist’s arsenal. 
There are however obvious limitations to this technique: only conducting samples can be 
imaged. By contrast, Atomic Force Microscopy can image surfaces of virtually any 
nature, including polymers and organic molecules. Operation environments include 
vacuum, ambient air and even liquids. Also, unlike STM, AFM is not restricted to 
topography, but can image many sorts of interactions and be employed for active  
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manipulation on the nano-scale. All this makes AFM to a very versatile tool indeed. By 
their introduction of the AFM in 1986, Binnig et al. expressed their expectations of the 
AFM having the potency of atomically resolved surface imaging. It took five more years 
however before it came to be [6], while the famous Si(111) 7x7 surface had to wait until 
1995 for being exposed in real space by AFM [7]. Complicating factors in AFM to be a 
match for the STM’s resolvability are firstly that the probe signal (movement) is only 
indirectly convertible to usable data, i.e. a voltage signal; this is much easier achieved in 
STM which probe signal is a directly usable current. Secondly, the type of forces the 
AFM senses are often less strongly distance-dependent. This requires AFM tips to be 
extremely sharp, in order to have the front atom optimally protruding from the 
neighboring tip atoms. 
Atomic Force Microscopy technology has much in common with STM; the difference is 
mainly the type of probe. The tip of an AFM is attached to a cantilever, which shows a 
varying deflection during scanning. This movement is read out and interpreted in terms of 
topology and possibly different kinds of interaction. Initially, cantilever movement was 
detected by STM. Later it became common to invoke interferometry or the refraction of a 
laser beam, aligned on the cantilever apex, for movement detection. 
AFM developed into two main branches of operation: A) static AFM (or contact AFM) 
and B) dynamic AFM (or non-contact AFM).  
 
A) Static AFM 
 
In case of static AFM, the tip is scanned over the surface and its deflection is read out. 
Usually, the tip is brought to contact with the surface (contact mode AFM), see Fig. 5.2, 
but this is not necessarily the case. 
 

 
Fig, 5.2 Contact mode AFM, with either I) the tip being allowed to be attracted by 
adhesive forces and the cantilever mount gently trying to lift it, or II) the tip being 
pressed against the surface, when repulsive forces dominate the tip-sample interaction. 
 
The feed-back parameter is the deflection of the cantilever, which height is 
piezoelectrically adjusted so as to maintain constant deflection. The piezoelectric signal 
provides a topographic image. Torsion around the cantilever beam axis (perpendicular to 
the deflection indicated in Fig. 5.2 can be utilized to study frictional forces. 
Contact mode cantilevers are usually soft (around or below 1 N/m) in order to avoid too 
much deformation of both the tip and the sample. Operation in vacuum is not 
straightforward, because this kind of cantilevers are very sensitive to external vibrations, 
but ambient air and even liquids are suitable working conditions. Under special 
circumstances, atomic lateral resolution is achievable. 
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B) Dynamic AFM 
  
Dynamic Atomic Force Microscopy is comprehensively reviewed in amongst others 
Garcia and Pérez [8]. With dynamic AFM, the cantilever is deliberately imposed a 
vibrational motion, usually at or near its free resonance frequency. Permanent physical 
contact with the sample is avoided. In most cases, only attractive forces are being probed. 
A counterexample is for instance an electrostatically biased tip probing a local trapped 
surface charge of equal polarity. Two examples of tip-sample interactions are provided 
below. One important force is the attractive Van der Waals force, which in its simplest 
form27 is given by: 
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Here H is the Hamaker constant, depending on material properties of tip and sample 
(typically in the order of 1 eV [10]) R the tip radius of curvature and zt the instantaneous 
distance between tip and sample. The Van der Waals force is a result of fluctuations in 
the electric dipole moment of individual atoms. The bonding energy of two atoms at 
mutual separation z is proportional to z–6. Additivity and replacing the sum over the 
discrete (atomic) contributions by an integral leads to the simplified form Eq. (5.1). This 
relatively slow weakening of the force with distance enables the Van der Waals force to 
manifest at relatively long ranges. A well-known expression for short-range forces is the 
Lennard-Jones (LJ) potential: 
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where Uc is a chemical bonding energy, z the instantaneous tip sample separation and z0 
the equilibrium distance. The first, adhesive term stems from a short-range Van der 
Waals interaction. The second term is repulsive and is only manifest at extremely short 
approach, where it will very quickly dominate. 
 
Characteristic for dynamic AFM is the use of fairly stiff cantilevers (resonance 
frequencies ranging from 1 kHz to above 100 kHz), an important advantage of which is 
to help prevent “jump-to-contact” (JTC): the tip permanently sticking to the surface under 
influence by adhesive (Van der Waals) forces. The vibrational characteristics (resonance 
frequency, amplitude, phase shift) can be read out and manipulated very accurately. Also 
dynamic AFM is commonly operated using feed-back control, which any of the 
mentioned vibration characteristics are suitable for. When the tip is brought close to the 
surface, tip-sample forces modify these characteristics. The large range of types of 
encountered forces, and the complexity of properly treating the dynamics of large 
amplitudes (which are often used; up to 100 nm), make the interpretation of the data all 
but a trivial task.  
 On this basis, dynamic AFM has branched further into two classes, namely “Amplitude 
Modulation” (AM) and “Frequency Modulation” (FM). 
 
 

                                                 
27 Valid for a geometry defined by a spherical tip and a flat surface 
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1) Amplitude Modulation  

 
In AM-mode, the tip-sample distance is controlled so as to maintain a constant amplitude 
of the vibration, which is affected by tip-sample interaction forces. This distance is used 
as topology signal. Peculiar for amplitude modulation is that despite being a dynamic 
AFM technique, a variation developed that was successfully employed in the repulsive 
regime, i.e. by intermittent contact between tip and sample, for which Veeco® registered 
the term “tapping mode”.  
In the following lines, a few notions about AFM dynamics will be briefly reviewed along 
the concept of a ‘weakly perturbed harmonic oscillator’. A full mathematical description 
of a vibrating cantilever with tip would be an arduous task, but for many purposes it 
suffices to consider the cantilever motion in terms of beam deflection theory. Often, the 
problem is further simplified by considering only the tip motion governed by the 
following equation for a damped mass-spring system: 
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Here, m is the dynamic mass, k the spring constant, ω0 the undamped angular resonance 
frequency, z the position of the tip, Q the quality factor of resonance, F0 the driving force 
amplitude28, ω the angular driving frequency, and Fts the collection of all tip-sample 
forces, which can depend in numerous ways of the separation distance with the sample, 
hence on z. For Fts = 0 we recognize the standard problem of a forced, damped harmonic 
oscillator. In this case, the amplitude A of the motion performed by the tip is given by 
(see also subsection 4.3.5), 
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which is maximized when excited at (damped) resonance frequency: 
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The damping has the effect of decreasing the resonance frequency by 
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and modifying the phase by 
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28 Not to be confused with the motional amplitude of the vibrating cantilever obviously. 
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Here f is defined as the phase in the steady component of the complete solution to Eq. 
(5.3) given by Acos(wt – f). In the case of forces additional to the driving force, the total 
force becomes for small displacements: 
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This affects the effective stiffness through 
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As a consequence, the angular resonance frequency is modified by: 
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By now it has become clear how the force gradient affects the three vibrational 
parameters phase shift, resonance frequency and hence amplitude. It has to be stressed 
that the above treatment is strictly only useful to develop a qualitative notion of the 
influence of the force gradient. This simple harmonic approach fails clearly to reproduce 
experimentally observed quantitative results, for various reasons. Among them are the 
assumptions of the force gradient being independent of position Eq. (5.8) and the force 
gradient smaller than the cantilever stiffness Eq. (5.9). For the large amplitudes that are 
commonly employed in dynamic AFM, these conditions are never both met. For 
example, the force gradient can vary with orders of magnitude within the oscillation 
trajectory. Furthermore, in intermittent contact mode, energy and momentum is 
transferred between tip and sample, which is not considered here. The reader will 
recognize the difficulty of interpreting the data from AFM operated at amplitude 
modulation. An extra source of ambiguity is the existence of two stable oscillation modes 
of the cantilever when in interaction with tip-sample forces, upon which not will be 
digressed here further.  
 

2) Frequency Modulation 
 
Thermal noise puts a lower limit to the minimum in frequency shift that can be detected 
with amplitude modulation. This minimum is given by: 
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Here, Df is the shift in resonance frequency due to tip-sample interaction, f0 is the 
cantilever’s free resonance frequency, kB Boltzmann’s constant = 1.38·10–23

 J/K, T the 
temperature in K, k the cantilever stiffness, Q the quality factor of resonance and 2

oscz  
the mean-square amplitude. B, the bandwidth of operation, is typically the number of 
pixels scanned per second. Sensitivity could be enhanced by operating the AFM in  
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vacuum, which would increase the quality factor by typically two orders of magnitude 
compared to ambient air. However, the operability in vacuum of amplitude modulation 
AFM is problematic. While it is possible in principle, it is unmanageably slow. When a 
scan is started, the cantilever oscillation contains a transient term added to the steady 
state term mentioned underneath equation Eq. (5.7). This transient term is a decaying 
exponential characterized by a decay time t = 2Q/w0. Any change in the conditions, for 
example moving the tip to the next grid point to scan, which may for example alter the 
tip-sample distance due to slope or corrugation, causes transient terms to re-appear in the 
cantilever motion. Given the high quality factors that are typical for vacuum (unlike for 
example air), it means that reliable amplitude measurement can commence only after a 
stabilization time in the order of 1 second. For the large number of grid points that are 
usual in contemporary AFM (at least 256 × 256), a scan would take much too long, 
which is undesirable not only for general reasons, but also will drift effects (e.g. thermal) 
render the process of reliable imaging highly problematic. 
Nevertheless, Albrecht et al. [12] demonstrated a viable solution for satisfactory 
operation of Non-Contact AFM in vacuum. Instead of the amplitude, the resonance 
frequency was selected as feedback parameter. While amplitude measurements needs to 
wait for the transient motion to damp out, the resonance frequency, affected by tip-
sample forces, adapts to the new conditions within typically one oscillation cycle. Prior to 
a scan, the tip is brought to oscillation at resonance frequency while still far from the 
sample. Then a fixed shift in resonance frequency is set. The tip is then lowered until the 
new resonance frequency, now influenced by interactions with the sample, differs exactly 
this amount from free resonance. During the scan, the tip height is adjusted to keep this 
frequency constant, which is again associated with the surface topology. A second 
feedback loop is coupled to the driving force to keep the amplitude constant. According 
to [12], the minimum detectable frequency shift in FM AFM is given by: 
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which is apart from a numeric factor identical to (5.11). Unlike with AM, where an 
increase of Q would directly negatively affect the bandwidth, these quantities are 
uncoupled in FM. It is no surprise that it was exactly FM with which non-contact AFM 
was reported first [6] to have achieved atomic resolution, including again the famous 
Si(111) 7x7 mapping [7]. Later, even sub-atomic features, associated with chemical bond 
lobes, have been resolved [9]. Readers interested in the background of FM-AFM and 
many of its aspects are recommended to consult [10]. 
 
 
5.1.4 Frequency shift in FM AFM 
 
It is thought worthwhile to mention a few more important expressions in the field of 
Frequency Modulated AFM, see also [11] and [12]. For small oscillation amplitudes and 
under the condition that the driving force compensates energy loss through damping and 
tip-surface interactions, the frequency shift is simply related to the interaction force 
gradient via: 
 
 



5.1 Principles of AFM 

 131 

 
 

0( )
2

ts
c

cz z

f F
f z

k z =

∂
∆ = −

∂
. (5.13) 

 
As interaction forces wane far from the sample, the frequency shift is negative for 
attractive forces. However, in general large amplitudes are being applied in NC AFM, in 
which case Eq. (5.13) ceases to be valid. For weakly disturbed, large oscillations, several 
authors provide the following dependence of the frequency shift on the interaction forces: 
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Here zmin is defined as the distance of closest approach. The square brackets denote 
functional dependence here. 
A final quantity should be reproduced here. It has been demonstrated by Giessibl [13] 
that in the limit of the oscillation amplitude much larger than the range of force, the 
operational quantities in Eq. (5.14) can be extracted from the integrand, leaving a 
quantity that is dependent on the interaction force only. This normalized frequency shift is 
related to the ordinary frequency shift via 
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In concreto: 
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This approximation is valid for interaction forces that drop off with distance with at least 
a quadratic rate or exponentially, which holds for most common forces. In those cases: 
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Here, C and u are constants. G is the ordinary gamma function, interpolating the discrete-
valued faculty-function. These expressions Eq. (5.17) provide good agreement with 
experiment. 
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5.2 CHARGE IMAGING ON THIN OXIDE FILMS 
 
As indicated in subsection 5.1.1, Atomic Force Microscopy is capable of investigating a 
large variety of physical quantities that can be defined for surfaces and thin layers of a 
very broad range of materials. Within the context of this thesis, we are interested in 
small-scale features of the electric properties of thin dielectric layers. For this, AFM can 
be supplemented with Kelvin Probe technology by the use of a conductive tip. Given the 
particular AFM operation mode commonly employed in the research described in this 
section, we speak of “Frequency Modulated Kelvin Probe Force Microscopy” (FM 
KPFM). With this technique, fluctuations in the work function of a given sample surface 
can be revealed with a lateral resolution better than 50 nm. Within the context of KPFM, 
the term “Contact Potential Difference” (CPD) is often preferred over ‘work function’, to 
stress the difference in potential of the conductive tip and the small sample surface 
directy underneath it. Generally, the interaction stemming from CPD probed by a tip 
biased at a voltage V with respect to the electrode underneath the dielectric layer can be 
derived from the electrostatic potential between tip and sample: 
 
 2½ ( )CPDU C V V= − . (5.18) 
 
Where C is the tip-sample capacitance, which depends on their separation z. The resulting 
force and the gradient therein are obtained by once and twice differentiating with respect 
to the normal coordinate: 
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Note in Eq. (5.19) the positive sign in F = +∂U/∂z. The reasons for this are firstly the fact 
that the cantilever tip is a voltage controlled system and secondly that charge and 
capacitance are linearly related. See the discussion in subsection 2.1.1, specifically Eqs. 
(2.1) to (2.5).  
Like Van der Waals forces, electrostatic forces can be long-ranged and consequently 
contribute substantially to the genuine topographic signal. Repeated scans at different 
bias voltages V are needed to untangle the interactions, but this is not a straightforward 
procedure. A more elegant alternative is applying a modulated bias voltage at frequency 
wV: V(t) = VDC + VAC sin(wVt). Equation (5.20) then becomes: 
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We observe that the applied voltage results in a constant contribution (first two terms), a 
component at angular frequency wV dependent on VDC and a component at angular 
frequency 2wV independent of VDC. The DC-voltage that removes the first harmonic is 
equal to the CPD. Obviously, this requires an additional feed-back loop. The  
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disadvantage of this method is the risk that artifacts of the bias modulation can show up 
in the ultimate CPD-image. We will not discuss the details of this further. 
Imaging of local charges on thin Al2O3-films has been described in [14] and [15] and 
more comprehensively in [16], though the field of imaging surface charges has aged for 
almost 20 years already, beginning with the work by Terris et al. [17]. Many authors have 
reported important contributions since then.  
The ultrathin (2.5nm) alumina layers were deposited by Atomic Layer Deposition (ALD) 
on p-type silicon (001). The conducting AFM operated in Ultra High Vacuum (UHV; 
5·10-11 mbar) in non-contact Frequency Modulated mode. The cantilever is read-out in 
near-resonance (45-115 kHz [15]) by detecting the deflection of a laser beam by a four-
quadrant photo diode. When a bias voltage is applied to the tip, electric charges manifest 
as large protrusions or indentations, depending on the polarities of the bias voltage and 
the surface charge. For a detailed description of the set-up and the technique of imaging 
be the reader referred to the aforementioned thesis.  
Protrusions caused by charges can be distinguished from proper topographic features by 
re-scanning the same area with different bias voltages. In particular, reversing the bias 
polarity causes the image of localized charges to reverse color, whereas the proper 
topographic map remains essentially unchanged. Reversing the bias voltage thus decides 
whether a particular feature is a local charge. If affirmative, the polarity of the charge can 
then also be immediately determined. An alternative for doing repeated scans with 
changed bias voltage is scanning with modulating bias, as proposed and demonstrated in 
[17]. The electrostatic interaction of a biased tip (V) with a conducting sample having a 
localized surface charge Q in its dielectric tip layer is of the form: 
 
 2 2

elF aQ bQV cV= + + . (5.22) 
 
In Eq. (5.22), a, b and c are constants depending on the geometry of the electrostatic 
problem and material properties, such as the dielectric constant of the top insulating 
layer. In absence of any charge, only the last term of Eq. (5.22) survives. For a modulated 
bias voltage of the form V(t) = V0 cos ωVt, the electric force becomes in that case 
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so an interaction signal from the AFM will contain a component with angular frequency 
2ωV. Now in presence of a charge Q, the second term in Eq. (5.22) will give rise to an 
extra signal component with a frequency identical to the angular bias frequency ωV. This 
allows for imaging charges with a single scan. Assuming V0 positive, the signal from a 
positive charge would then be in phase with the applied voltage. A negative charge would 
be in anti-phase. 
Here, I will restrict to reproducing a representative result (Fig. 5.3) done with varied 
constant bias voltage. Fig, 5.3 captions rather fortuitously two charges of opposite 
polarity in a single picture. It is reported that most charges encountered on Al2O3 are 
negative, with a density of 0.4 ± 0.2 µm-2. Positive charges are much less abound, no 
reliable density has been established. Models for quantitative analysis of local charges 
(force on tip, depth and intensity of the charge) are presented in the following sections. A 
charge on a silicon dioxide film (standard test sample of the AFM set-up), captured using 
the same setup, is shown in Fig. 5.4. 
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Fig. 5.3 Topographic scans (1.5 x 1.5 µm²) with a negative and positive charge. Bias 
voltage is -0.69 V (a) and +0.60 V (b) respectively (reproduced from [15]). 
 

  
 
Fig. 5.4 Trapped surface charge on SiO2 on Si. Left: Topography; Right: CPD. Bias: -
0.5V; scanning window: 1 × 1 µm². 
 
A different, interesting experiment concerning the dynamics of charge trapping is 
described in [18]. Here the tip of a conducting AFM was used to deposit charges on a 
dielectric layer, anodized barrier-Al2O3. After charge deposition and retraction of the tip, 
the tip scanned over the charge multiple times. The peaks in these scans, resulting from 
the charge-tip interaction, decreased in time. From the specific decay patterns in time, 
conclusions were drawn about the vertical distribution of traps in the dielectric layer. It 
was derived, that for oxides thicker than about 30 µm, the charge trap density becomes 
differentiated: a higher trap density close to the surface, and a lower trap density at 
greater depths, closer to the Al2O3 interface. 
 
 
5.3 THE ELECTROSTATIC PROBLEM AND EARLIER MODELS 
 
This section starts with the introduction of the electrostatic configuration, the relevant 
quantities and parameters. Then, an existing model by Ludeke is described, and its 
amendment by Lambert. Numerical results of this Ludeke-Lambert model are deferred to  
section 6.6, where this model is compared with the Multimirror model presented in 
section 6.4 and Finite Element modeling treated in section 6.5. 
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5.3.1 The electrostatic problem 
 
The electrostatic problem under consideration is the one as depicted in Fig. 5.5, which 
shows the tip of a conducting AFM probing a localized charge in a dielectric layer on top 
of a conductor. The tip is represented as a conducting sphere, with radius R and put to a 
bias voltage V with respect to the sample. This bias is usually represented by an 
appropriate point charge (qV = 4pe0RV) located in the centre of the conducting sphere. 
There is a space a between tip and sample surface. The dielectric is of thickness d and has 
a dielectric constant ε. The trapped charge q is located a distance s above the 
metal/dielectric interface. 

 
Fig. 5.5. Electrostatic configuration 

 
It can be shown (see Appendix) that the electrostatic force must be of the form 
 
 2 2

el VV qV qqF V qV q= α + α + α . (5.24) 
 
Here V is the bias voltage and q is the amount of trapped charge. All expected 
electrostatic interactions can be grouped into three classes; the first is the interaction of 
the bias-charged tip with the sample. All bias-related charge in the tip scales with V and 
so does the induced charge in the sample. This holds true also if one considers that this 
induced charge in the sample on its turn again induces charge in the tip, etc. 
Automatically, the summed interaction scales with V². The second class is the interaction 
between the trapped charge q in the sample and the bias charge qV in the tip, which yields 
the second term. Finally, the trapped charge interacts with its own image in the tip, which 
the third term is accounting for. Non-electrostatic interactions are not considered in this 
context, nor any additional static charges or varying surface potentials (extra terms linear  
 
in V or q). The coefficients a are functions of the dielectric constant and the geometric 
parameters: the oxide thickness, the tip radius, the tip spacing and the horizontal tip 
centre-charge distance, if there is any. The latter two (αqV and αqq) depend also on the 
vertical coordinate of the trapped charge (positioned at  x = y = 0); α1 does not, for the 
pure tip-substrate interaction cannot depend on the locations of charges that happen to be 
around.  
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As stated in section 5.1, the relevant parameter in Force Modulated Atomic Force 
Microscopy is the force gradient, from which the shift in cantilever resonance frequency 
can be determined. 
The spatial gradient of the electrostatic force in the (vertical) z-direction is of similar 
form as Eq. (5.24): 
 

2 2el
VV qV qq

F
V qV q

z

∂
= β + β + β

∂
, (5.25) 

 
in which the all coefficients β are determined by β = ∂α/∂z. In this and the following 
sections, two models will be presented and compared, that aspire to solve the electrostatic 
problem, or at least to determine the interaction between tip and sample plus trapped 
charge. It is in these coefficients that the differences between the models, or calculation 
methods, treated here transpire.  
To add further meaning to this, it is sought to compare the models on the level of 
experimentally relevant parameters. A localized bias-varied probing measurement 
principally yields two distinct, independent quantities. Firstly there is the shift in the 
minimum of the parabola, Vmin, which is the voltage with which during a measurement 
the applied pre-set bias voltage is modified in order to minimize the force gradient.  
 
 

min 2
qv

VV

q
V

β
= −

β
, (5.26) 

 
It is immediately apparent from Eq. (5.26) that Vmin scales with q. The second is the ‘peak 
height’, which is the difference between the interaction levels of a charge present or 
absent, which is equivalent of comparing the interaction strength of the tip in the charge’s 
zenith with far away from the charge (in the horizontal direction). A linear scan in the x-
direction will show a peak compared to the background bias interaction when passing 
over the charge:  
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q

F F F F
F x x x q q q

z z z z

∂ ∂ ∂ ∂
∆ ≡ = − → ∞ = = − =

∂ ∂ ∂ ∂
. (5.27) 

Consequently, 
 2' qV qqF qV q∆ = β + β . (5.28) 
 
 
5.3.2 Earlier models 
 
Earlier work on the solution of the above electrostatic problem (Fig. 5.5) has been 
published by Ludeke and Cartier[19], who consider only the interaction of the trapped 
charge with its image in the tip and the tip’s bias charge. For the force gradient, the 
relevant quantity in frequency modulated non-contact conducting AFM, they give: 
 
 2 2 2 2 2 2

2 2 2 2 3 2 2 5 / 2

0

3 2
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z z l R z l

∂ + − −
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∂ πε ε + − ε +
. (5.29) 
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Ludeke defines z (I reserve ordinary ‘z’ for the vertical distance from the metal plate) as 
the vertical distance between charge q and tip centre, = d – s + a + R. l is the horizontal 
distance between charge and tip centre and Vb is the bias voltage. In [19] the second term 
has a minus sign, as he puts the tip on ground instead of the sample.  
The effect of the dielectric layer is accounted for by defining an ‘effective dielectric 
constant’ 
 1

( 1)
2effε ≡ ε + . (5.30) 

 
This factor accounts for the change in apparent strength of the source charge q as a result 
of polarization of the surrounding dielectric material, when observed through a interface 
between dielectrics; the assigned terminology seems thus a bit misleading as a ‘dielectric 
constant’ is rather a factor influencing field strength. In the section on elementary image 
problems we will encounter this factor again.   
A refinement on this model is the inclusion of the interaction between tip and sample, for 
which Lambert and Saint-Jean [20], provide an extra contribution that I’ll call Fsub,z 
(substrate):  
 2
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(5.31) 

 
The total gradient is the sum of these gradients (1) and (3). Given this explicit expression 
for the force gradient, the β-coefficients of Eq. (5.25) are readily extractable. After 
integration of Eq. (5.29) and (5.31) over z , the α – coefficients come out as well. It is not 
thought functional to provide the explicit expressions for those coefficients here. N.B.: In 
the Ludeke-Cartier expression Eq. (5.29-31), βVV = 0. The pure bias-interaction is not 
considered there. In itself, this is no serious deficit, as this interaction plays no role in the 
study of trapped charges. It does not appear in the experimental quantities Eqs. (5.26) and 
(5.28). 
In [16], yet a different expression is suggested for the ‘effective dielectric constant’, in 
order to better accommodate the Ludeke – Lambert model to the observed electrostatic 
phenomena in the case of ultrathin (2.5 nm) oxides. 
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 (5.32) 

 
There are however a number of situations in which this model just fails to provide an 
accurate account of the interaction strength. A point in case is for example a charge on 
the interface of the base electrode and the dielectric layer. The Ludeke – Lambert model 
predicts a nonzero tip-charge interaction, while obviously it has to be zero, as the charge 
coincides with its mirror then. Especially for thin oxides the predictions of this model are  
quite suspect; an interface charge gives a significant value for the ‘gradient minimizing 
voltage’ (more on this later), which should be zero, and increasing by a mere 10% for a 
surface charge. In section 6.6 the problems with this Ludeke-Lambert model will be 
addressed in more detail. 
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5.4 THE MULTI MIRROR MODEL 
 
In principle, the electrostatic problem in Fig. 5.5 could be solved by using the method of 
image charges. This method can be found in any textbook on electrostatics with the 
classic examples of a point charge in the presence of an infinite, flat, conducting surface 
and a conducting sphere. With appropriate modifications this method is also applicable 
for a charge facing a flat surface of a dielectric. These three standard situations are in fact 
the ingredients for the calculation method presented in this section.  
If the charge faces two mirrors instead of one, the total number of image charges is 
infinite, except in some exceptional cases. The second face not only mirrors the original 
charge, but also the image of the charge in the first mirror. The first mirror picks up all 
images in the second mirror, etcetera. This is still known from electrostatics [21], but this 
infinite mirroring between tip and sample is newly applied to AFM modeling here. The 
tip apex is usually less than one tip radius spaced from the sample. Neglect of the infinite 
mirroring  results in a sometimes dramatic underestimated prediction of the tip-sample 
interaction. 
In the present configuration (fig. 5.5) there are in fact three mirroring surfaces present: 
The dielectric surface, the metal/dielectric interface and the AFM tip. This complicates 
matters considerably. Nevertheless, this method of images proves viable for calculating 
the electrostatic problem, as will be demonstrated in this chapter.  
  
 
5.4.1 Imaging in tip 
 
For this chapter, it was chosen to not display the complete build-up of the principles of 
the multi-mirror calculations all the way from its fundamentals. The reader is referred to 
Appendix 1 for the standard image charge situations and the mechanism of infinite 
reflections. It is demonstrated there that Poisson’s equation is satisfied in all relevant 
regions in this case.   
This section starts with the important assumption that the tip of the AFM can be aptly 
modeled by a conducting sphere. This is expected appropriate when the tip spacing is 
clearly smaller than the radius of curvature. The electric field is then essentially confined 
between the sample and the lower part of the tip. Related quantities like energy density, 
capacitance and force are well addressed. 
For large spacings or sharp tips, the ‘rest of the complete’ tip gains influence with respect 
to the mere tip apex. In these cases, the sphere approximation is expected to 
underestimate the total interaction strength. In practice, further deviations are possible if 
the tip apex is not well spherical, but has a certain roughness. 
 The evaluation of the electrostatic interaction starts with the determination of the point 
charge in the dielectric and the location of all the mirrors and reflections as described by 
Eq. (A10) (see Appendix 1). The equations for values and positions of these charges 
concern those for an observer in the vacuum region and a trapped charge inside (or on) 
the dielectric. 
The bias voltage on the spherical tip is represented by a charge at its centre. In this case, 
the equations for a charge floating above the sample apply. First, there is the (important) 
direct mirror in the surface of the dielectric layer. Furthermore, this charge results in two  
chains of virtual charges: one resulting from the original charge and one resulting from 
the image of the tip bias charge in the metal, i.e. the dielectric/metal – interface.  
All charges outside the tip, real and virtual, cause images in this tip.  
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These “in-tip”-images can be grouped in two classes: 

1) The image of the trapped charge, the images of all its infinite reflections and the 
images of the mirror of the charge in the metal/dielectric interface and its 
infinitely many reflections. 

2) The image in the tip of the mirror in the dielectric layer of the original bias 
charge, and the images of all reflections of the bias charge caused by the two 
interfaces metal/dielectric and dielectric/vacuum (the surface of the dielectric), 
and the images of the mirror of the original bias charge in the metal, plus its 
corresponding infinitely many reflections. 

At this point a first order approximation of the electrostatic potential in all regions can be 
evaluated, by summing the partial potentials of all individual real and virtual charges. It is 
stressed once more that for the calculation of the potential, it is essential to realize in 
what region the potential is calculated, i.e. where the observer is. In vacuum, a certain 
collection of charges with certain values is seen. Inside the dielectric, the apparent 
strength of those charges is different, and there are even charges felt not seen by the 
vacuum observer, namely those who (to the dielectric observer) appear to be in the 
vacuum region. 
The force on the tip is principally just calculated by calculating the interaction of an “in-
tip” charge (either real or virtual) with each of the “out-tip”- charges: the trapped charge 
with all its reflections, and the mirrors (in the sample) plus reflections of the original bias 
charge. This procedure is repeated for all “in-tip” charges after which all individual 
contributions are summed. Internal interactions between in-tip charges only are not 
considered: they do not contribute to interaction on the tip as a whole.  
Only at this point, this calculation can be said to be ‘complete’ because a) all three basic 
imaging29 principles have been addressed, and thus b) the tip interacts with the trapped 
charge even in absence of a bias charge, because the trapped charge is imaged in the tip.  
However, technically this potential does not fulfill the boundary conditions: All newly 
assigned image charges in the tip should again have their (not yet described) counterparts 
in the sample. A better approximation is obtained in a cyclic manner. In the first cycle, 
the tip, with its collection of bias and image charges, is mirrored in the dielectric (Eq. 
(A9)). Furthermore, the tip itself sews chains as described by Eqs. (A10) and (A13). The 
dielectric mirrors and these chains are again mopped up by the tip according to the 
principle of spherical imaging as in situation 2). At this point the first cycle stops. The 
next cycle starts again by first reflecting the tip in the dielectric and then forming the 
multitude of charge chains and reaping them again with the tip. With subsequent cycles, a 
better approximation is obtained.  
 
5.4.2 Force and gradient calculation; convergence 
 
Like described above, the force on the tip is calculated by grouping all charges in the tip 
and let each of them interact with each charge in the ‘outside world’, which includes the  
trapped charge in the dielectric, all direct mirrors (in metal and dielectric) and all 
primary, secondary, tertiary etc. chains, mirrors of these chains, and so on. The z-gradient  
 
                                                 
29 For the sake of distinguishing all groups of virtual charges, the following terminology will be 
maintained as good as possible: The image of a charge in a flat surface (the surface of the dielectric 
or the dielectric/metal interface) is called “mirror”, and an image in the tip will be called “image”. 
Also, if the context allows, mirroring in the ‘dielectric’ and ‘metal’ will be used as brief 
expressions for ‘dielectric surface’ and ‘dielectric/metal interface’. 
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(the relevant AFM probing quantity) can be well determined by calculating the force for a 
certain tip spacing and repeating the process for the tip displaced a small vertical 
distance.  
In a practical calculation, the infinite chains of reflections must be truncated, as well as 
the number of ‘sew-and-reap’ cycles30. But still then, one very quickly ends up with tens 
of thousands of charges, having hundreds of millions of interactions or many more. With 
a few tricks, these calculations are doable, though still considerably time-consuming.  
First, it appeared that the length of the semi-infinite charge chains turned out to be of 
little importance. An illustration for this could be the following: Replace the chain of 
infinite reflected charges by a single continuous line charge, with the charges spread out 
over regions of width 4d. This line charge will take up an exponential form. For thin 
oxides, this is not too bad an approximation and in certain configurations it actually 
works quite well. Although the single charges do not cancel with those resulting from a 
mirrored source, these line charges almost completely do. Because the semi-infinite line 
charge of the original source charge has its head shifted 2d with respect to the line of the 
mirrored source charge, this ‘overhang’ of length 2d is not cancelled. But ‘because’ the 
tails do cancel, the length of the chains is not so important. 
Hence, in the calculations this chain length is set to 1 (the effect of varying chain lengths 
has been studied); only in the last step of sewing out the charges from the tip to the 
sample, these chains are given lengths of typically 2-5 charges.  
The number of repeat steps of sewing the charges and reaping them with the tip lets the 
number of charges very quickly get out of hand. A typical situation starts to settle after 8 
repeat steps, which leads to impractical calculation times; this gives the force, and the 
same amount of time is required for the gradient, which is determined differentially 
(symbolic calculations are out of the question as the dependence of the magnitudes of the 
higher order charges on the coordinate gets impossibly complex). However, as one would 
expect, the interactions for successive amounts of repeat steps have an exponential trend 
and are well fittable as such; especially if one leaves out the first two steps. For 12 cycles 
this is demonstrated in Figs 6ab, which has been done for the a ε = 9.1 dielectric of 25 
nm, with a negative unit charge 2 nm below the surface, probed by a 100 nm radius tip at 
-0.5V 15 nm above the surface. Interactions calculated with repeat steps 3-6 and fitting a 
trend for repeat-number towards infinity provides a quite reasonable estimate for the 
ultimate interaction. 

  
Fig. 5.6 .(left): Convergence of force vs. number of mirror cycles 
Fig. 5.6b (right): Convergence of force.gradient vs. number of mirror cycles 

                                                 
30 Without truncation, a lower bound estimate is (∞∞)2 interactions, whose evaluation and 
summation would certainly be beyond ‘impractical’.  
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5.4.3 Field line plots, electrostatic repulsion 
 
In many cases, drawings of electric field lines in non-trivial electrostatic problems can be 
made only by ‘educated guesses’ or finite element simulations. In this particular problem 
the actual solution can be approximated arbitrary closely by adding more and more 
appropriate point charges. This means that everywhere the field can be calculated exactly 
for a given charge configuration. Multimirror potential contour plots, combined with 
some field lines, are given in Figs. 5.7. Of course, these plots hold no particular surprises, 
but they help to visualize the electrostatics. 
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Fig. 5.7 Electrostatic potential and field plots for a 10 nm radius tip (white circle) spaced 
15 nm above a 25 nm thick dielectric (below white horizontal line) with ε = 9.1. In the 
top figure there is a charge of -4e 2 nm below the surface of the dielectric, with the tip at 
-0.1V relative to the conductor (at z < 0). In this particular case, the tip experiences net 
repulsion. In the lower diagram a more intense charge (-12e) is present. The charge has 
a stronger image in the tip here. The attractive contributions outweigh the repulsive 
contributions. 
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5.4.4 Electrostatic repulsion 
 
Most often, the net electrostatic force on a biased tip is attractive towards the sample. 
This is always the case in absence of a trapped charge and if the charge and the bias 
potential are counterpolar. A net repulsive force is only possible if the trapped charge and 
the bias charge in the tip have the same polarity. This repulsive force then has to 
outweigh two attractive contributions: the tip with the substrate (the normal capacitive 
attraction) and the trapped charge with its image in the tip. The balance for net repulsion 
can be delicate. The geometric parameters (dielectric constant ε, dielectric thickness d, tip 
radius R, tip spacing a (or the tip position zt = R + a + d), lateral tip position xt and charge 
position s) determine whether repulsion is possible at all. If this is the case, it can be 
reasoned that the intensity of the charge cluster must be between certain bounds. If it is 
too small, the attractive V2

 – interaction will dominate the repulsive qV – interaction. If it 
is too large, the trapped charge attracts its image in the tip too strongly: the q2 – 
interaction dominates. To be more specific, consider the force Fel (cf. Eq. 5.24). The 
geometrical parameters αVV and αqq are always negative, while αqV is always positive. Fel 
can have a positive value if and only if the geometrical condition αqV > 4αVV αqq  is met. 
Repulsion will then occur if the ratio of q and V is in a limited range of values: 
 
 

2 2
qV qV

qq qq

D Dq

V

−α + −α −
< <

α α
,           2 4qV VV qqD ≡ α − α α  (5.33) 

 
The repulsive regime for two tip radii and a particular geometry otherwise is illustrated in 
Fig. 5.8. 

 
Fig. 5.8 Intensity of one charge cluster required to give a repulsive force on the tip, as a 
function of tip spacing. The charge cluster is located at the surface of a 25 nm thick 
dielectric with ε = 9.1. The tip, radius R = 10 or R =100 nm,  is in the zenith of the 
trapped charge. The vertical axis is given here in the number of charges per volt. Here 
this does not denote a capacitance, as charge and voltage are independent, free 
parameters. The upper limit of the R = 10 nm region (light grey) crosses the upper limit 
of the R = 100 nm (dark grey) at a spacing of about 80 nm. The latter region is hence not 
totally encompassed by the former. 
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The first thing to learn from Fig. 5.8 is that below a certain spacing (a ~ 0.5R, here 4.5 
and 60 nm respectively), the force on the tip is always attractive. A more remote tip 
enhances the chance to have repulsion, as well as a smaller tip. In general, a large zt / R 
ratio31 enhances the chance for repulsion. Another conclusion is that, given a tip radius 
and a bias voltage, there is an absolute minimum for the amount of trapped charge in 
order to have repulsion. For the R = 100 nm tip, this occurs at 81 nanometer spacing and 
requires 750 unit charges in the cluster. For a R = 10 nm tip, repulsion can occur for 
much smaller charges and smaller spacings. The chance for repulsion increases quite a 
lot, as is seen from Fig. 5.8. Beyond a certain spacing, the lower bound of the repulsive 
regime will increase (linearly) with spacing. This means that the tip will have three 
regimes for large charge clusters. At short distances, the dipole-dipole force of the 
trapped charge dominates. This attractive force drops off with the fourth power of the 
distance: Fel ∂ z–4. Receding from the surface enters the domain of the trapped charge 
with the bias charge (dipole-monopole). This repulsive force is proportional to z–3 and 
dominates the former. At very remote distances, the relatively weak but long range bias-
bias (monopole-monopole, Fel ∂ z–2) interaction of the tip with the substrate itself 
dominates. 
Repulsion is more likely to be possible for small tips. As remarked on the basis of Fig. 
5.7, only a handful of unit charges suffice to repel a weakly biased tip of only 10 nm 
radius. Finally, more factors generally enhancing the chance of tip repulsion are thick 
dielectrics, with the charge as much as possible on the surface. A high dielectric constant 
shields the trapped charge and enhances the bias-bias interaction. Therefore, repulsion 
will occur easier in case of a low-ε dielectric.  
 
5.4.5 Critical behavior 
 
If the tip of the AFM is brought increasingly closer to the sample, the peak gradient ∆F’ 
(Eq. 5.28) gets more and more negative, as the repulsion between trapped charge and bias 
charge is increasingly stronger. For even closer spacings, Multimirror predicts that 
attractive forces start to rapidly increase; one of them is the enhanced attraction between 
the trapped charge and its image in the tip, as remarked in subsection 5.4.4. It is thought 
useful to stress that certain parameters can suddenly change at close spacings, even in 
sign. Fig. 5.9 shows how the peak force (total force minus bias force) and the peak 
gradient critically change for a cluster of 25 charges at the surface of a 25 nm dielectric. 
 

 
Fig. 5.9 Peak force and peak gradient ∆F’ at close spacings for 25 unit charges at the 
surface of a 25 nm dielectric (ε = 9.1). Tip radius is 100 nm. 

                                                 
31 See Appendix Eqs. (A66) and (A96), where is defined p = 2zt / R. 
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The total force is attractive. But below a spacing 5.4 nm, the peak force itself is attractive 
(negative) too. The interaction of the trapped charge with its image in the tip is dominant. 
As stated in the previous subsection, it is short-ranged. At close spacings, it hence 
dominates the trapped charge – bias interaction and the bias-bias interaction, as these are 
of longer range. Above 5.4 nm, the repulsive charge-bias interaction takes over. The 
force reaches a maximum at 9 nm (14 pN). At larger spacings, also the repulsive force 
weakens. There is one more interesting tip spacing, as we have seen in the previous 
subsection. Above 60 nm, there exist combinations of trapped charge and bias voltage 
that make the force as a whole (including bias-bias interactions) repulsive. If we look at 
the peak gradient: this is the vertical derivative of the peak force. For close spacings it is 
positive. It crosses the axis where the force has a maximum, namely at 9 nm. It has a 
minimum at 13 nm spacing and approaches zero for even higher spacings. Finally, Vmin 
behaves uniform over the complete range of spacings. It is highest at close spacings and 
disappears relatively slowly for higher spacings.  
 
5.4.6 Resolution depth and magnitude 
 
5.4.6.1 Bias variation 
 
Electrostatically  varied measurements 
 
A measurement is aimed to yield magnitude and depth of a localized charge.  As 
remarked, a typical experiment returns a ‘peak height’ and an offset bias voltage which 
minimizes the electrostatic force gradient when the tip is above the charge. In the multi 
mirror model the depth is not readily extractable from the parabolic coefficients because 
of their very complicated dependence on it. In principle however it is possible to deduce 
magnitude and depth of the charge graphically from the following graphs (5.10ab): 

 
 
Fig. 5.10a (left) Vmin as a function of depth of a charge 
Fig. 5.10b (right) Peak value ∆F’(Vbias = –0.5 V) for q = 1 – 10 electrons 
 
The dependence of Vmin and peak height on the depth of a negative unit charge are shown; 
the continuous looking lines are in fact discrete simulation points (depth steps 1 
nanometer) connected by straight line pieces.  This dependence is shown for 1 – 10 
negative unit charges; in both cases the uppermost lines represents a unit charge. A 
measurement yields a certain value for Vmin. We observe from the top graph that for    
Vmin = –0.03 V only the lines for 6 – 10 charges come into consideration. In the first place 
this puts a lower limit for the amount of charge that has been observed, namely 6. In the 
second place, the approved traces are crossed by the –0.06 V line at certain depths. These  
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depths can be taken over in the lower graph, giving rise to a set of values of peak heights. 
Ideally, exactly one of these peak height values is equal to the measured value for this 
parameter. If there is no match, other types of interaction must have been in play, which 
can partly be dealt with. This topic will be left rested in this text. But even in the ideal 
case there is a very disturbing complication, namely that the set of peak values will be 
very closely packed, i.e. there is practically no spread in these values. The following 
three-dimensional plot seeks to clarify this somewhat more: 
 

 
Fig 5.11 Vmin and peak (∆F’) vs. depth. 

 
For 1 – 5 charges (thin – thick lines) the depth of the charge (vertical axis) in the oxide is 
plotted against the peak height and the minimizing bias voltage. ‘High in the cube’ 
represents ‘great depth’, corresponding a charge practically ‘at the bottom’ of the 
dielectric, i.e. close to the metal/dielectric interface. In this figure, the projections of these 
lines on the three faces of the ‘cube’ are also given. Moving upwards from a certain point 
in the diagonal ground plane ‘line’ (actually a set of lines) lets one cross several graphs, 
representing different amounts of charge, at different depths. Two important remarks 
apply. Firstly, the vast majority of combinations of peak height and Vmin are theoretically 
excluded, or claimed impossible to encounter in practice. Most probably this practice will 
not be so compliant and yield a point outside this ground plane line. In this case, one 
needs more information about the extra interactions. Secondly, more important is the 
observation that this ground plane line is in fact not a single line, but a bundle, as will 
emerge from this plot from the ground plane projection, see Fig. 5.12. 
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Fig. 5.12 Ground plane projection of Fig. 5.11 

 
The indistinguishability of the multiple(!) lines in this ground plane renders the task of 
unambiguously deducing values for charge magnitude and depth from the experimental 
parameters Vmin and peak height impossible. A small charge close to the surface is 
equivalent to a big charge at greater depth. At best a lower limit for the charge magnitude 
can be given. This ambiguity is partly resolved if one works with small bias values.  

 
Fig. 5.13 Low bias probing 

 
Quite surprisingly, one and the same charge at different depths can give the same peak 
height, provided that the bias voltage is relatively small (though nonzero), as in Fig. 5.13, 
where the bias voltage is reduced by a factor of 10 to 0.05V. A measured peak height of 
0.001 pN/Å crosses the back plane projection (blue) of the q = 5e curve (thick) at depths 
of roughly 4 nm as well as 15 nm. Also the q = 4e and q = 3e curves are intersected 
twice. Of course, the total interaction is different for both intersection and for the Vmin 
parameter there is no ambiguity. We do observe that in the case of a large negative Vmin 
the ambiguity disappears (spread in ground plane lines) and only remains in case a small  
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negative Vmin is observed.  It has to be borne in mind however that reducing Vmin scales 
down the peak height signal by roughly the same factor (neglecting the cq² term).  
The background of this indistinguishability is that one is essentially looking at a dipole32, 
consisting of the trapped charge and its image in the metal/dielectric interface. If looked 
from a large distance at a dipole p = q·2s, with q the charge and 2s the separation (the 
factor of 2 is introduced to maintain s as the distance metal interface – charge), its 
appearance is the same when q is increased by some factor and s decreased by that same 
factor. 
Several other attempts to resolve this issue of indistinguishability have been tested. A 
reduced spacing (10 nm instead of 15 nm) yielded no improvement at all, though the last 
word has not yet been said; namely, for very close spacings (e.g. 5 nm, which is not 
unrealistic) critical behavior in the measured signals can occur, as is displayed in 
subsection 5.4.5. On intuitive grounds, it was suggested that the dominance of the charge-
bias interaction over the charge – image in tip interaction might cause these interaction 
profiles to be so closely spaced. Reducing the tip radius by a factor of 10 to 10 nm 
reduces the bias voltage charge in the tip centre also by a factor of 10, in order to scale 
down the big charge cluster in the tip centre. Again, this yielded no gain in spread. This 
can be explained that reducing the tip radius while keeping the spacing constant helps 
nothing in conceding relative interaction strength in favor of the charge-image in tip 
interaction.  The interaction distance between charge and bias voltage centre decreased 
considerably; as the force depends quadratically on this distance, this interaction in fact 
grows with respect to the charge-image interaction. Consequently a larger tip should also 
be considered; which is however experimentally not very realistic and undesirable for 
different reasons. 
 
5.4.6.2 Geometrically varied measurements  
 
The above described methods are al based on performing a couple of on-charge bias-
varied measurements, perhaps compared to off-charge measurements. As these do not 
seem to provide detailed information about charge magnitude and depth, different 
methods have to be investigated. Adding geometry (tip position) as a variable parameter 
has the potency of helping to resolve the issue of ‘degenerated’ (ambiguous) solutions.  
Two methods come into consideration: 
 
* Interaction profiles in the horizontal directions 
* Variation in tip spacing 
 

1) Horizontal scan 
 
The most natural approach, as this is what is more or less automatically done in 
conducting AFM measurement practice. A charge on the surface is expected to give rise 
to a relatively sharply peaked profile. However, this is seems only marginally the case. 
For a 100 nm tip spaced at 15 nm from a 25 nm thick oxide it is assumed that a peak 
height of -0.015 pN/Å has been measured. Fig. 5.14 shows for 1 – 5 charges how the 
peak height depends on their depth. It is clear that a single charge could not have yielded 
this peak, but 2 and any higher number could have. 

                                                 
32 It is also this dipole character that is responsible for humps that can exist next to the central peak 
of an interaction profile in horizontal scanning direction. 
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Fig. 5.14 Peak height dependency on depth 

 
The x-profiles of a 2-charge cluster at a depth of 0.7 nm and a 5-charge cluster at a depth 
of 13.8 nm are compared in Fig. 5.15. These charge-depth combinations should yield the 
same peak height. 
 

 
Fig. 5.15. x-profile comparison of charge clusters; the upper line corresponds to the 
more superficial charge 
 
It transpires that the spatial peak width is only marginally different for these clusters. An 
explanation could be the following: For the above applied bias, the charge-bias 
interaction dominates over the charge-tip image interaction. Because of the large tip-
radius and hence the long distance of this interaction (> 100 nm), the difference of the z-
position of the charge clusters (~10 nm) is hard to notice. 
Narrower tips however offer increased possibility of resolving depth and magnitude. In 
Figs. 5.16 and 5.17 interaction profiles are shown for 10 nm and 1 nm narrow tips, 
brought at close spacings in order to increase resolution power. The profiles are 
normalized for pure resolution comparison. The charge is at depths 0, 5, 10, 15 and 20 
nm below the surface. 
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Fig. 5.16 R = 10 nm; spacing = 5 nm 

 
Fig. 5.17 R = 1 nm;  spacing = 2 nm. 

 
It has to be remarked that for these narrow tips, the validity of the spherical tip 
assumption is increasingly open to question. For these graphs however, the precise 
interaction strength is less relevant. The enhancement of spatial resolution is believed to 
be still well demonstrable under this assumption even for very sharp tips. 
 

2) Varied tip-spacing 
 
Performing bias varied measurements (‘parabolas’) at different heights is a second 
option. Both measurement series provide certain sets of charge/depth combinations that 
all explain the observed measurement parameters. The two sets should have exactly one 
element (charge-depth combination) in common. Again, a relatively superficial charge 
must be more incentive to interaction variation with height than a charge at a deeper 
position in the dielectric. In Fig. 5.18 the two black lines indicate two possibly measured 
values (-0.0114 V and -0.0140 V) for Vmin. The light-grey curves are for a remote tip at 
20 nm and the sharp, dark grey curves represent a near tip at 10 nm. Curves are given for 
1-5 charges. Intersecting points of the black lines (measured values) with the charge 
curves provide several possible charge-depth combinations. 
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Fig. 5.18 Tip spacing (10 and 20) varied depth dependence of Vmin 

 
Of course both tip spacings must point to equal amounts of charge, yielding numerous 
‘intersection pairs’. The members of these pairs must lie above each other, for the depths 
must match. In the above graph this boils down to two candidate solutions of (q = –3e, 
depth = 4.5 nm) and (q = –4e, depth = 8.8 nm), though there may be more for higher 
amounts of charge. Additional information is retrieved from the peak heights belonging 
to this measurement. Though possibly mathematically more elegant, in practice this 
method has the disadvantage of being more cumbersome.  
 
 
5.5 FINITE ELEMENT MODELING 
 
Finite Element Modeling (FEM) is a powerful and versatile tool for performing 
calculations for a great variety of physical problems. It is especially applied in situations 
that are too complex to handle for analytical calculations. Typical problems consist of 
flow patterns of a gas or liquid through complex channels, the distribution of heat in 
cooling fins, deformation of materials under pressure, the magnetic field of currents, 
etcetera. FEM has become indispensable for contemporary engineering.  
 Concerning the research in this chapter, FEM is used for two purposes. Firstly 
for comparison of the outcome of the here treated analytical models and secondly to 
estimate the applicability of the spherical tip approximation used by these models, by 
supplementing the sphere with a conical part. Concerning the first application, it is 
remarked that the main results are presented in section 5.6 (model comparison). 
 
 
5.5.1 Principles of Finite Element Modeling 
 
In principle, any well-defined physical geometry can be implemented in Finite Element 
Modeling. Relevant material constants can be specified and appropriate boundary 
conditions. Once a certain problem is well-specified, the geometry is subdivided in 
elementary units, called ‘mesh elements’. Usually, for 2D geometries triangles are used 
for they are best suited to approximate any particular geometry33. Likewise, a 3D 
geometry is commonly meshed with tetrahedrical elements.  
 
                                                 
33 For highly symmetric geometries, or parts of it, preference may be given to rectangles. 
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Once a mesh is defined, a solving algorithm attempts to assign a value for one or more 
relevant, ‘leading’ quantities to every point in space. In heat conduction through some 
material for example, this means specifying the temperature everywhere.   
The solving entails numerical coupling of the mesh elements to each other to form an 
overall solution. The accuracy of the solution increases with the number of mesh 
elements. Sharp edges require relatively many and small elements in order to optimally 
approximate the local geometry. Also, the values of relevant physical quantities can vary 
a lot over short distances (have large gradients). More complex geometries demand more 
mesh elements. Needless to say, more mesh elements has to be paid with increased 
calculation times and is bounded by the internal memory of the system the simulation is 
running on.  
 
A global solution can be plotted (graphically represented) in various ways. Also, from 
this solution, more quantities can be derived like temperature gradients, stress or forces. 
Even time dependent simulations are possible, in which parts move under influence by 
forces or in which potentials vary over time. 
Here, COMSOL® Multiphysics34 2.3 was used for FEM of an electrostatic problem, 
which entails solving Possion’s equation for all mesh elements, after which the electric 
potential of every point in space is specified, and with it the electric field (which is the 
negative gradient of the potential).  An example of a potential contour plot and a meshing 
is given in Fig. 5.19: 
 

  
 
Fig. 5.19 (left)  Contour slice plot of the potential. Shown here is a conical tip with apex 
radius of 100 nm radius tip (at bias -0.5V), spaced 15 nm above the surface (thin 
horizontal line) of a 25 nm thick dielectric (εr = 9.1). The small pointlike feature 
underneath is the potential around a (negative unit) point charge. The granularity of the 
mesh elements is visible at greater zoom only. The singular nature of the point charge is 
dealt with by making it to be the corner of a mesh element. (right) Mesh elements of 
conical tip and the dielectric with a localized charge. 
 

                                                 
34 Formerly known as ‘Femlab®’ 
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5.5.2 Determination of force gradient 
 
The information requested from these simulations is the force and the force gradient on 
the tip. The force on the tip can be determined in two ways. The first is to integrate the 
electrostatic energy density over the vacuum (bounded by a box much larger than the 
actual configuration). When this is done for a few different, closely spaced tip heights 
and the energy is plotted against height, a force is obtained. For the configuration 
described underneath Fig. 5.19, meshed with approximately 550.000 elements, the total 
energy is shown in Fig. 5.20. The message conveyed by these three plots is that the 
simulated vacuum energy has a very stable dependence on the tip spacing, while the 
dielectric energy clearly has not. Note that the differences are quite small, a hundredth of 
an attoJoule (= 0.06 eV) or less; a few percent in the dielectric region.  The behavior of 
the energy in the dielectric region is alone responsible for the irregularities in the total 
energy (Fig. 5.22). Incidentally, it is the dielectric region that contains the singularity of a 
point charge. Still, a force can be reasonably determined in this case, but a gradient in the 
force (second derivative of U(z) ) is not feasible. An additional difficulty is that the drawn 
dielectric has an enormous aspect ratio: 25 nm thick and several microns in length, and a 
charge-surface distance of only 2 nm. This is however mainly noticeable through the 
large number of mesh elements required. 
 

 
Fig. 5.20 Total electrostatic energy (atto-Joule) vs. tip spacing (Ångström). 

 
It is interesting to add the results of the partial energies of the vacuum region (Fig. 5.21) 
and the dielectric region (Fig. 5.22). 
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Fig. 5.21 Electrostatic energy of the vacuum region Fig. 5.22 Electrostatic energy of 
the dielectric region 
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Meanwhile, the force can be determined more directly by integration of the Maxwell 
stress tensor over the surface of the spherical tip. This can be done for a couple of tip 
spacings around the ‘working point’ (= the actual static tip spacing). A linear fit through 
these points yield the force and the gradient (Fig. 5.23). 
 

 
Fig. 5.23 Directly determined force vs. tip spacing 

 
The force points are reasonably fittable, yielding a force of –31.71 pN and a slope 
(gradient) of 2039 µN/m. Determining the slope between two successive force points 
yields values spreading between 1569 µN/m and 2712 µN/m, which at least demonstrates 
that steps of 1 Å lead to unstable results. More and wider spread points are needed. At 
least five points are recommended, spread out over a not too narrow region in which the 
force can still be considered to be linearly dependent on the spacing; here typically about 
1 nanometer. 
 
 
5.5.3 Conical tip 
 
The top half of the spherical tip was replaced by a cone-shaped piece of metal of 2 µm 
high. This produced the results presented below (Figs. 5.24-5.26). 
 

 
 
Fig.5.24: Force vs. separation  for cone-shaped tip Bias –0.5 V, charge 2 nm underneath 
the surface. F = –38.8 pN; dF/dz = 1945 µN/m 
Fig.5.25: Force vs. separation  for cone-shaped tip Bias –0.5 V, no charge (bias 
background); F= –38.9 pN; dF/dz = 2347 µN/m 
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Fig. 5.26 Force vs. separation for cone-tip at Vb=0 V Bias 0 V; charge 2 nm underneath 
surface (charge – image interaction;  F = –0.0067 pN; dF/dz = –0.19 µN/m 
 
Considering the doubts about COMSOLs numerical accuracy, little more can be said 
about the total force gradients than that in case of the multi model they generally agree, 
but that quantities like ‘peak height’ cannot reliably be determined by the performed 
COMSOL simulations. In case of this cone-shaped tip the general value of 1945 µN/m 
should be a reasonable estimate of the force gradient, but the peak height of –402 µN/m 
(cf. the bias background) is much open to question. What is quite reliably calculated is 
the total force on the tip, if a bias is applied. Small changes in geometry are clearly 
reflected in a relatively smooth variation of the force, which for the lion’s share is 
determined by the strong bias interaction of the tip with the plate electrode. The 
COMSOL result of –38.8 pN force on the cone tip can therefore be taken with reasonable 
trust. This would mean that a spherical tip model underestimates the force by 18% 
compared to a (short) cone-shaped tip, given this configuration. Considering how much 
extra metal volume is added, this indicates that the sphere does not do too bad a job. But 
as in reality a tip is much larger than 2 µm high, this percentage should probably be 
somewhat higher even. How this estimate falls out for closer spacing has not been 
investigated. And also, how this difference in force works out on the difference in force 
gradient, is unsure. 
The problem is firstly that the force data points must be aligned really well because for 
determining the peak height only coarsely the fit slope must already be accurate to better 
then 1%. Secondly, these Finite Element simulations have had great difficulty in taking 
account of the trapped charge.  
Concerning the latter problem, an idea is to replace the point charge with a small 
spherical conductor with the appropriate potential on its boundary. This removes the 
singularity and encourages the mesh function to generate a higher(!) density around the 
charge (a singularity becomes a corner of a mesh element, not increasing the mesh 
density in its neighborhood very much). Concerning both problems: Reduce the problem 
to 2D by exploiting the rotational symmetry. At first the idea was to make a interaction 
profile by making the tip ‘scan’ a few points along the x-axis, but in many cases already a 
lot of information is retrieved by letting the tip float somewhere right above the charge, 
thus allowing to convert it to a 2D problem. 
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5.6 MODEL COMPARISON 
 
In this section, the three models / calculation methods Ludeke-Lambert, Multimirror and 
FEM will be compared for various situations and various parameters. The first subsection 
tabulates some characteristic results, while the second subsection compares depth 
profiles, i.e. interaction parameters as a function of the depth of the charge in a 25 nm 
thick oxide. 
 
5.6.1 Interaction parameters 
 
The comparison addresses three different configurations: The first has an oxide of 
thickness 25 nm and a dielectric constant of 9.1, the library value for aluminum oxide in 
COMSOL. The second decreases the dielectric constant to 3.9 (silicon oxide). In both 
cases a single negative charge is placed 2 nm below the surface. The third situation is 
again aluminum oxide but reduced in thickness by a factor of 10 to 2.5 nm. Considered is 
a negative unit charge 0.5 nm below the surface in this case. The geometric ratios in this 
last case were deemed too disproportional (ultra-thin oxide) for COMSOL to handle 
properly in an straightforward way. In all situations applies: Tip radius 100 nm, spacing 
15 nm, negative unit charge. The quantities F, dF/dz and ∆F’ are taken at Vbias = –0.5 V 
(tip negative with respect to the sample). The depth of the charge measured from the 
dielectric surface is indicated in the table headers (Table 5.1-3). For each table the 
capacitance (atto-Farad) as calculated by Multimirror for that situation is given. 
 
Table 5.1  MM: C = 22.5 aF        ε = 9.1   d = 25 nm. (depth 2.0 nm) 
 F (pN) F’ (fN/Å) ∆F’ (fN/Å) Vmin (mV) 
Ludeke-Lambert N.A. 8.5 -0.23 -9.4 
Multimirror -36.3 269 -5.0 -4.3 
Finite Element -31.9 206 -7.0 -8.3 
Table 5.2  MM: C = 21.4 aF       ε = 3.9   d = 25 nm.  (depth 2.0 nm) 
 F (pN) F’(fN/Å) ∆F’ (fN/Å) Vmin (mV) 
Ludeke-Lambert N.A. 7.5 -0.26 -21 
Multimirror -28.5 170 -4.4 -7.0 
Finite Element -25.4 127 -16 -28 
Table 5.3  MM: C = 24.6 aF        ε = 9.1 d = 2.5 nm. (depth 0.5 nm)  
 F (pN) F’ (fN/Å) ∆F’ (fN/Å) Vmin (mV) 
Ludeke-Lambert N.A. 8.8 -0.22 -9.4 
Multimirror -48.2 490 -0.35 -0.18 
Finite Element N.A. N.A. N.A. N.A. 
 
Where applicable, Multimirror is in reasonable till good agreement with FEM for the 
interaction strengths (F, F’, ∆F’). In all occasions except one, these parameters are very 
much larger than as predicted by Ludeke-Lambert. Vmin generally comes out considerably 
lower for Multimirror, compared with Ludeke-Lambert. The latter model agrees here 
better with FEM than Multimirror does. The meaningfulness of the latter mutual 
(dis)agreement is doubtful however. For the configuration of Table 5.1 this point will be 
clarified in the subsequent subsection (5.6.2). For the charge at slightly greater depth 
Multimirror in turn agrees much better with FEM than Ludeke-Lambert does. 
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5.6.2 Dependence on charge depth 
 
It has been chosen to include in the model comparison the dependence of the interaction 
parameters ∆F’ (or ‘peak’) and Vmin, for a number of reasons. In the first place, resolution 
of charge magnitude and depth has been one of the topics in section 5.4 devoted to the 
Multimirror model. Secondly, it illustrates a remark in the previous subsection about the 
matching of Vmin between FEM and Ludeke-Lambert. Finally, and most importantly, a 
fundamental defect of the Ludeke-Lambert model is demonstrated, which is not present 
in the Multi-mirror model, see Figs. 5.27: 
 

 
Fig. 5.27 ∆F’ and Vmin vs. z-coordinate of charge (s = d – depth). Dots are derived from 
FEM simulations, solid line is Multimirror and dashed line is Ludeke-Lambert. 
 
These diagrams give rise to many important observations. Firstly, it transpires that the 
FEM simulations did not yield a stable and smooth dependence of the interaction 
parameters as a function of the location of the trapped charge; the data points are rather 
scattered. As was remarked already in section 6.3, presumably the singular nature of the 
trapped charge poses some problems here. Secondly, The differences between 
Multimirror and Ludeke-Lambert are once more shown to be enormous. Concerning the 
peak height ∆F’, Multimirror agrees well with FEM. Ludeke-Lambert is hardly present in 
this diagram. Thirdly, the fact that Ludeke-Lambert agrees much better with FEM for the 
value of Vmin at s = 23 nm can be considered rather coincidental, because of the scattering 
of the latter’s data points. At s = 20 nm for example, Multimirror on its turn agrees much 
better with FEM than Ludeke-Lambert does.  

 
Fig. 5.28 Peak height according to Ludeke-Lambert. Here the horizontal coordinate is 
the depth of the charg. The value is not changing much over the whole oxide. 
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The fourth point to establish here concerns the just mentioned defect: according to the 
Ludeke-Lambert model, the trapped charge maintains a considerable influence, even 
when at the interface of the metal and the dielectric (s = 0). Actually, theoretically it 
should be zero. The depth dependence of ∆F’ according to the Ludeke-Lambert model is 
presented in Fig. 6.24. For thinner oxides the predicted dependence becomes even 
weaker; in the case of a 2.5 nm aluminum oxide, the interaction parameters subside by 
merely ~10% when a charge is sunk from surface to interface. 
 
5.7 RELATION TO EMPIRICISM 
 
Charge imaging measurements have been performed on Al2O3 and SiO2 by Marko Sturm 
et al. [15, 16], as described in chapter 5. His work is chosen to endow the multimirror 
model with empiric relevance in two ways: 
Firstly, together with relation (5.12), the model predicts a verifiable value for the 
frequency shift of the AFM. Secondly, the voltage offset in the total force gradient 
(depending quadratically on the voltage) is compared with contact potential difference 
pictures from localized charges. In this way, the two experimental parameters peak height 
and Vmin are both covered. 
 
Frequency shift 
 
As digressed on in section 5.1, force modulated AFM maps frequency shifts. The models 
in this chapter provide force gradients. With Eq. (5.11), the gradient is readily 
translatable into a frequency shift, provided the oscillation amplitude of the cantilever is 
sufficiently small. However, as force modulated AFM is generally operated using large 
amplitudes, it is rather the force itself that is important and specifically its profile along 
the z-axis. Both the multi mirror model and the Ludeke-Lambert model (integration of 
(5.29-5.31) over z) are fed with a cantilever stiffness of a platinum iridium tip k = 45 N/m 
(www.nanosensors.com), a resonance frequency f0 = 75 kHz, a closest approach zmin = 5 
nm and an amplitude A0 = 10 nm. Furthermore, oxide thickness 2.5 nm, ε = 9.1 and tip 
radius R = 100 nm are used. A single negative charge was located on top of the surface, 
which has no visible influence on the curves below (Fig. 5.29ab): 
 

Multimirror            Ludeke-Lambert 

 
Fig. 5.29a  Model comparison on predicted frequency shift Fig, 5.29b 
 
A bias dependent frequency shift carried out by Sturm [16] showed: 
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Fig. 5.30 Measurement of shift in resonance frequency of AFM cantilever as a function of 
tip-sample bias voltage [16] together with the multi mirror prediction 
 
The numerical agreement of the Multimirror calculations with the experiment is clear. It 
has to be mentioned that the frequency shift depends quite strongly on the parameters, 
which adds an element of coincidence to the good agreement, but the order of magnitude 
is at the very least correct, whereas the Ludeke-Lambert model has no chance of 
explaining the measured frequency shift, due to a serious underestimation of the tip-
sample interaction. 
 
Contact potential difference 
 
The CPD, contact potential difference, is defined as the tip-bias voltage that minimizes 
the electrostatic force gradient between tip and sample. If the sample dielectric contains 
fixed charges, this gradient is minimal for some nonzero voltage. Even at this voltage a 
(small) net gradient will remain in general. According to the Multimirror model, this 
CPD should be in the order of millivolts. This is in contradiction with typical 
measurements that show CPD’s up to 1 or 2 decivolt: 
 

   
         
      Fig. 5.31 CPD of a charge [16]   Fig. 5.32 ∆F’  scaled 
 
The ‘dips’ flanking the central peak signal the dipole nature of the interaction, which is 
especially pronounced for thin oxides, where the trapped charge is close to its mirror in 
the metal. The electric field E of a pure, solitary, mathematical dipole p at position xp is 
given by: 
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In which n̂  is a unit vector from xp to x. This field is similar to the pattern shown in Fig. 
5.33, where it is plotted for a physical dipole (nonzero length). At length scales larger 
than the dipole length, the field lines are well comparable. 

 
 
Fig. 5.33 Field of a dipole   Fig.5.34 Field of a dipole in a dielectric slab 
 
Now, if one approaches the vertical axis parallel to (and off) the horizontal axis, like a 
charged scanning tip, the vertical component of the electric field charges sign. This 
means that at first, a test charge would be downward attracted far from the dipole and 
repelled upward when above the dipole. This behavior is qualitatively conserved if the 
dipole is wrapped in a dielectric slab, as shown in Fig. 5.34. This can be seen already 
from Eq. (5.34), as with a horizontally more remote tip, the vector to the dielectric 
becomes increasingly more disparallel with the dipole vector, which decreases the term 
containing n̂⋅p . It should be noted that the interaction between a tip and a charge 
(cluster) is more complicated, as there is the additional interaction of the charge with its 
image in the tip. This is always attractive, regardless the relative polarity. Especially for 
large charge clusters, the latter can become a significant contribution. 

 
Fig. 5.35, x-profile of force gradient and CPD  for native alumina, 2.5 nm thick, of a 
cluster of  50  electrons 0.5 nm below, probed with a 100 nm tip at V = –0.5 V at 10 nm.  
 
It turns out however, that in the given configuration, the multimirror model can reproduce 
this profile only by assuming sufficient (more than one) charges per cluster. The graph in 
Fig. 5.35 is for 50 negative unit charges. As Vmin is proportional with q, this would restore 
the CPD from the multi-mirror model to a desired value. This idea of clustered charges 
may initially be counterintuitive because of their mutual repulsion. The following could 
be an explanation: Charges get trapped typically in lattice defects. Provided these traps 
are (energetically) sufficiently deep, the mutual electrostatic repulsion will not cause the 
charge cluster to fall apart.  Large tips will not be able to spatially distinguish two single 
charges so close together and count them as one charge with double value. Only narrow 
and closely spaced tips will notice a broadened x-profile.  
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5.8 CONCLUSIONS AND DISCUSSION 
 
The electrostatic interaction between the tip of a conducting AFM and a dielectric layer 
containing a localized charge on top of an electrode had been taken account of by a 
model from Ludeke, amended by Lambert. Presented in this chapter is a model 
(Multimirror) that incorporates various types of repeated, multiple images and reflections. 
This and the Ludeke-Lambert model share the assumption that the tip of a conducting 
AFM can be aptly represented by a conducting sphere hovering above the surface. The 
validity of this assumption has been confirmed by Finite Element Modeling (FEM) for a 
tip of radius 100 nm.  
Multimirror predicts much higher values for typical interaction parameters, such as total 
force gradient and peak interaction, than the Ludeke-Lambert model does. Depending on 
the parameter and the configuration, the difference can go up to about two orders of 
magnitude. Concerning this difference, Multimirror is supported by FEM in most cases, 
especially for the total force between tip and substrate. The FEM simulations had some 
trouble with accounting for the singular nature of the charge, considering the spread of 
the points in depth dependent studies. For the gradient minimizing voltage, or Contact 
Potential Difference (CPD), Ludeke-Lambert in turn predicts considerably larger values 
than Multimirror does. FEM is neither very supportive nor dismissive towards either 
model. 
A more fundamental difference between the models is how parameters such as ∆F’ and 
Vmin change for a charge sinking in the dielectric towards the electrode/dielectric 
interface. Multimirror predicts these parameters to drop off to zero, while according 
Ludeke-Lambert not more than only a moderate decrease is to be noticed, especially for 
ultrathin dielectrics. 
For resolving magnitude and depth of a trapped charge, various methods have been 
proposed. A static tip and varying the bias is not expected to convey any information 
concerning this. Scanning in horizontal direction over the charge works for sharp tips (≤ 
10 nm); only then will shallow charges give rise to significantly narrower interaction 
peaks than deep charges do. 
An additional prediction of the Multimirror model is critical behavior of ∆F’ when the tip 
approaches the substrate very closely, for certain configurations. 
The Multimirror model, together with the frequency shift calculation (5.12), predicts a 
shift of the AFM cantilever resonance that is in excellent agreement to measurements, 
while the Ludeke-Lambert model falls short by two orders of magnitude in this case. 
For a single charge, Multimirror predicts a Contact Potential Difference (CPD) that is 
orders of magnitude smaller than Ludeke-Lambert and what is typically measured in 
practice. The assumption of more unit charges in a single cluster is supported by that only 
then, Multimirror shows depressions next to the central peak in a x-profile scan. An 
additional consolation is that a charge density resulting from a 0.4 µm-2 cluster density 
(section 5.2) with only a single unit charge per cluster would be surprisingly low. Though 
not quite comparable situations, charge densities encountered in practice are usually 
much higher. Assuming more intense charge clusters resolves this. 
All in all, Multimirror can be concluded to account for the parameters characterizing the 
tip – sample + charge interaction much different than the Ludeke-Lambert model does. 
Fundamental issues, FEM and empiricism are all supportive towards the former. 
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CHAPTER 6  
 
 

CHARGE TRAPPING LIMITING 
CAPACITIVE MEMS-BASED 

SENSORS 
 
 
 
The influence of trapped charges on characteristics of capacitive MEMS-based sensors is 
addressed in section 2.3. Experiments concerning charge trapping in MEMS structures 
are reported in Chapters 3 and 4. Not yet considered is the question how charge limits 
the performance of complete MEMS devices.  
Designs of competitive MEMS-based sensors are guided by stringent demands 
concerning accuracy and reliability. The presence of trapped charges could be a 
troublesome factor. In this chapter, it is evaluated to what extent parasitic charge can 
contribute to the noise before the demands on the sensor are violated. Two capacitive 
devices are considered: a gravity gradiometer and an aluminum bridge RF power sensor 
encountered already in Chapter 3. 
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6.1 CHARGE TRAPPING IN A GRAVITY GRADIOMETER 
 
Since many decades, planetary research takes a keen interest in the internal structure and 
composition of celestial bodies. Direct observation of the Earth’s interior has been a 
dream of Jules Verne in “Voyage au centre de la terre” (1864), but so far the deepest hole 
ever drilled reached 12 km. Instead, volcanism unveils the chemical composition of 
regions deep in the Earth’s interior. The general internal stratification of the Earth has 
been derived from seismic waves. For example, it can be deduced that there is an abrupt 
transition at a depth of 2890 km, the boundary between the highly viscous earth mantle 
and the liquid outer core.  
In some cases, temporal variations in rotational speed indicate the existence of a liquid 
layer inside a celestial body, as has been the case for the planet Mercury [1]. 
Furthermore, planetary geologists study features at the surfaces of bodies. Cliffs, lines of 
fracture and volcanoes are signs of a moving crust. When a meteorite strikes a moon or a 
planet, material from the interior is ejected and redeposited. A spectacular example is 
NASA’s project involving the space craft Deep Impact [2,3]. In July 2005 it inflicted an 
impact on the comet Tempel-1 by firing a massive projectile, weighing 370 kg, into it. 
The spatial spreading of the ejecta was captured on camera and analyzed. Also the 
magnetic field of a celestial body can hold important clues. Magnetometer measurements 
by the Galileo satellite fortify the suspicion that the Jupiter moon Europa holds a liquid 
ocean underneath its ice crust [4]. 
Another method of research of internal structure is gravimetry, which has become an 
increasingly important metrological component in planetary research. Spatial variations 
in the gravitational acceleration of a celestial body reveal information about the local 
mass distribution and hence the interior of the studied object. Generally this is done by 
decomposing the measured field into spherical harmonic functions, the associated 
Legendre polynomials. One method of gravimetry, “Line-of-Sight” (LoS), is based on the 
gravity that satellites in orbit experience [5,6]. By tracking the position and fluctuations 
in the velocity relative to earth of satellites with extreme precision, details in the “gravity 
map” of a planet or moon can be derived. A disadvantage is that the line-of-sight method 
has limited resolving power. Only relatively large-scale features in the gravity field can 
be mapped. Another disadvantage is that the satellite may not always be visible to the 
observer. A solution to this problem is to put two satellites into orbit. They monitor each 
other’s position and velocity. With the GRACE (Gravity Recovery And Climate 
Experiment) project [7], the expectation is expressed that this improves the resolution of 
the measurement by orders of magnitude.  
Single satellites in orbit are in free fall and can therefore not measure the gravity field 
directly on board. Gravity gradients are feasible however. The gravity gradient is a tensor 
quantity defined by Γij = ∂gi/∂xj, with gi the gravitational acceleration vector. One is often 
only interested in one or a few tensor elements. The gravity gradient is commonly 
measured in Eötvös: 1 E = 10–9 (m/s2) / m = 10–9 s–2. For gravity gradiometry to convey 
useful information, a sensitivity of typically 1 E is required. 
Instead, good progress is made in the development of dedicated gravity gradient sensors: 
gravity gradiometers. In [8], a superconducting gravity gradiometer is presented which 
achieves a sensitivity of 0.02 E/√Hz. At the time of writing, the ESA satellite GOCE 
(Gravity field and steady-state Ocean Circulation Explorer) is planned to be launched in 
2009 [9]. This satellite is aimed at amongst others detecting the displacement of 
quantities of water, in service of the study of oceanic circulations. For this, the diagonal  
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Fig.6.1 Left: MEMS gravity gradiometer (top view). Light grey areas represent masses. 
Thick black horizontal lines are weak springs that hold the masses in the surrounding 
frame. The sensitive direction is vertical in this picture. Top right: Cross section (side 
view). Bottom right:  fragment of a comb drive (reproduced from [12]) 
 
elements of Γ are measured by three mutually orthogonal gradiometers. A gravity 
gradiometer consists of two extremely high-precision capacitive accelerometers separated 
by a certain distance: the baseline. The signal difference between the two accelerometers 
is a measure for the gravity gradient. 
The high accuracy of this apparatus comes at the price of considerable weight (180 kg). 
For more distant planetary missions, such as the Jupiter moon Europa, this much weight 
is not feasible. A project currently running [10,11] involves the design of a miniaturized 
gravity gradiometer: a single, compact sensing system weighing about 1 kg including 
electronics. Its designed sensitivity is δΓ = 0.1 E/√Hz. See Fig. 6.1 for a schematic. 
The gravity gradiometer consists of two accelerometers separated a certain distance: the 
baseline. A heavy test mass and a large baseline are beneficial for sensitivity. These 
properties are obviously not trademarks of a miniaturized device. The structure is made 
by bulk micromachining of a 10 cm. wafer. The barycenters of the masses are only 5 cm 
apart. The masses can be endowed with extra weight, but not more than a few decagrams. 
Consequently, the readout has to be carried out with very high precision in order to create 
a sensor with sufficient sensitivity. One important step in achieving this is the use of a 
comb drive (Fig. 6.1, lower right): this is a large array of finger-shaped electrodes 
grasping into each other. This way, a large capacitive area is achieved within a small 
volume. Each accelerometer is equipped with two pairs of comb drives, in order to detect 
and compensate for any rotation of the gradiometer. This refinement is neglected in the 
discussion following below. A simple, possible schematic to read out this gravity 
gradiometer is shown in Fig. 6.2. 
A real design contains feed-back electronics to keep the mass in its equilibrium position. 
For the current purposes, it suffices to show only a read-out circuit. The grey rectangles 
represent the accelerometer masses m, which are identical for the left and right 
accelerometer. The masses are separated by a baseline distance b. The dashed square on 
the left encompasses one such accelerometer. On opposite sides of one mass, there are 
two comb drives attached. 
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Fig. 6.2 Basic gravity gradiometer read-out scheme 

 
For the left accelerometer, these comb drives are represented by CA1 and CA2. The comb 
drives on the right are denoted CB1 and CB2. The capacitances CAn (n = 1,2) and CBn are 
initially identical. The two sources V1 and V2 produce a small ac-voltage in mutual anti-
phase (Eq. 6.1), at a frequency ωV  well above the mechanical resonance frequency of the 
mass-spring system: 
 

1 2 0
Vi tV V V e ω= − = . (6.1) 

 
The changing charges on the capacitors QA1 and QA2 contribute to a current IA on the left. 
It will be shown that no current will run unless the capacitances CA1 and CA2 are 
dissimilar. This asymmetry is produced if the mass is displaced, which changes the 
capacitive gaps. This makes for a sensitive differential measurement. A similar situation 
on the right produces a current IB, which will be present if and only if the capacitances 
CB1 and CB2 are unequal. The charges on those capacitor plates are not explicitly denoted. 
The current IA can be read out by measuring the voltage VXA across an impedant element 
ZX. This voltage is fed to a lock-in amplifier, together with a possibly phase-shifted 
version of the source voltage. The lock-in amplifier produces a dc output signal VA. 
Because a lock-in amplifier selects only signals with a frequency from a very narrow 
band around the operation frequency, noise with a broad frequency band is much 
reduced. 
Like IA on the left, on the right side the current IB is transformed to a signal to a lock-in 
amplifier, which yields a dc output signal VB. Comparing the values VA and VB reveals 
the variation of a gravity field over the length of the gradiometer. Applying Kirchhoff’s 
laws to all closed loops learns that the voltage over the left impedant element Zx is given 
by: 
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+ + ω
. (6.2) 

 
This shows that VXA will have a nonzero value only for unequal capacitances. Obviously, 
the same goes for the lock-in output VA, which is proportional to the product V0VXA of the 
individual voltages.  
A displacement ∆z of the mass causes an increase of the gap z of one capacitor and an 
equal decrease of the gap of its counterpart. The capacitances CA1 and CA2 are hence not 
independent. Let 
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in which z0 is the unactuated gap, with an associated null-capacitance  
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In these capacitances, A is the total capacitive area of the comb drive35. Eliminating ∆zA 
shows that the capacitances CA1 and CA2 are related via 
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which demonstrates that the series capacitance Cs is constant. For small displacements, 
which is certainly satisfied in case of a feedback loop, the sum of the capacitances can be 
considered constant. Deviations are only in the order of (∆zA/z0)². Thus we have: 
 
 

1 2 02A AC C C+ ≈ . (6.6) 
 
The difference between the capacitances is proportional to the displacement: 
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Now consider a gravity force FA on the left test mass m, displacing it a small distance 
∆zA. The experienced gravitational acceleration gA is thus: 
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F k z
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m m

∆
= = . (6.8) 

 
Here k is the spring constant. After substituting (6.8) into (6.7) for ∆zA and together with 
(6.6) merging it with (6.2), we observe that VXA is proportional to the gravitational 
acceleration gA: 
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Hence the lock-in output VA is proportional to gA. The same path can be followed for the 
right part of the schematic Fig. 6.2, by replacing the subscripts A → B. We can now 
define  

                                                 
35 Not to be confused with the subscripts under the quantities specified in the left part of the 
schematic. 
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the common mode acceleration gc = ½(gA + gB) by averaging the outputs of the individual 
accelerometers: 
 ( )c X V cV H i g= ω . (6.10) 
 
Here Vc = ½(VA + VB) is the average voltage and HX(iωV) the transfer function linking the 
recorded dc signal Vc to the measured quantity gc. It is defined by 
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Here λ is a factor with dimensions V–1

, introduced to encompass all not further specified 
parameters of the specific electronic circuit, such as amplifier gain. It is seen that a high 
mass, a low spring constant and a narrow capacitive gap are beneficial.  For a gravity 
gradient, we have to compare the currents of two accelerometers: 

 
 

, ( )d X b VV H i= ω Γ . (6.12) 
 
Here, Vd is the differential voltage VB – VA and  
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the gravity gradient, which is the fluctuation of the gravitational acceleration over the 
length b of the detector. The differential mode transfer function HX,b(iωV) is related to the 
common mode transfer function by HX,b(iωV) = bHX(iωV).  
The sensitivity of a practical design is limited by various noise sources. First, there is (a) 
the thermal noise (mechanical noise), which depends on the thermal movement of the 
atoms in the masses. This noise source is unavoidable and forms the absolute lower limit 
of the resolving capability of the sensor. It can however be reduced by operating the 
sensor at low temperatures and by choosing appropriate design parameters.  
A further contribution comes from the read-out electronics. As can be seen in Fig. 6.2, 
this is in our case a capacitive read-out. Only one contribution will be studied, which is 
caused by charge trapping. Any other noise contributions from the read-out circuit are 
considered to be lower than the mechanical noise (a). The charge trapping noise will be 
compared to the mechanical noise. The process of charge trapping has a stochastic nature. 
It contributes to the total noise in two ways: (b1) current noise and (b2) force noise. The 
noise sources (a), (b1) and (b2) are discussed below. 
 
(a) Thermal noise 
 
The intrinsic thermal noise power in the gravity gradient for a pair of accelerometers is 
given by [8]: 
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Here kB is Boltzmann’s constant, T is the absolute temperature, ωd and Qd are the angular 
resonance frequency and the quality factor of the differential mode. Advantageous for a 
low noise are low temperature and low angular resonance frequency. The latter asks for 
weak springs and large masses. Furthermore a long baseline is clearly beneficial. 
Concrete design parameters are tuned such that the thermal noise does not exceed the 
required sensitivity. For the present sensor, this target sensitivity δΓ is 0.1 E/√Hz. It is 
thus required that SΓ,T ≤ δΓ2 = 0.01 E2/Hz = 10–20 s-3. Chosen values for the mass and the 
spring constant are m = 0.02 kg and k = 1.3 N/m. They give an angular resonance 
frequency ωd = √(k/m) = 8.1 rad/s. so that fd = ωd/2π = 1.3 Hz. This resonance frequency 
is an upper limit to the measurement bandwidth. The baseline b is 5 cm. The sensor is 
operated at an temperature T = 77 K. A realistic value for the quality factor is Q = 105, 
provided that moving parts are made of silicon and that the device is operated in vacuum. 
The thus expected thermal noise SΓ,T = 0.014 E2/Hz can be said to meet the target 
sensitivity.  
 
(b) Charge trapping noise 
 
As mentioned above, additional noise can be expected from charge trapping. Let us 
consider one capacitor in some more detail, see Fig. 6.3:  
 

 
Fig. 6.3 Capacitor with dielectric layers, and surface trapped charge 

 
Only the dielectric layers (thickness d, dielectric constant ε) are shown. The total charge 
density on the metallic electrodes is denoted by σ1 and σ2. The trapped charge, for thin 
electrodes assumed to be predominantly on the surface, is indicated by σt1 and σt2. For 
feedback purposes, a static voltage V may be applied across the electrodes, on top of the 
ac read-out voltage. In principle, there are two ways in which noise in charge trapping 
can make itself felt: in (b1) direct trapping current noise and in (b2) force noise. 
The current I (IA in Fig. 6.2) is dependent on the charge QA1 = Aσ1 and QA2 (not drawn in 
Fig. 6.3) in the capacitors. Any noise in the latter quantities, by changes in the amount of 
trapped charge, affects the current. The electrode charge densities σ1 and σ2 depend on the 
trapped charges. They are given by: 
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They can be derived from the requirements that the displacement field D makes a jump 
σt1,2 at the corresponding charge sheets and that the potential drops over the gap and the 
dielectric layers must add-up to V. It is easily seen that a current I = A·dσ1/dt is in 
principle affected by changes in trapped charges σt1,2. Let us consider this in some more 
detail. For the following argument to be valid, it is permissible to assume that at every 
time the parasitic charge densities are at any time equally large and counterpolar:            
σt ≡ σt1 = –σt2. This simplification cancels the last terms of Eqs. (6.15ab). Then 
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Here zeff ≡ z – 2d(ε – 1)/ε. The approximation (z – 2d)/zeff ≈ 1 is tempting, because 
deviations are of the order of 2d/εz, which is about 2 × 10–4 for our parameters. However, 
its time derivative is still of significance, because it yields a built-in voltage term. The 
approximation is therefore only made outside the time derivative. Thus, Eq. (6.16) 
becomes: 
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(6.17) 

 
The total current can be viewed of consisting of three parts. The first part is the current 
through the MEMS capacitor, viewed as an ordinary, stationary capacitor. The second 
part results from the motion of the flexible electrode, which drives charges through the 
circuit. The third part is the current resulting from trapping and de-trapping of charges on 
the surface of the dielectric layers. This process changes the potential on the capacitor 
plates. The voltage source practically instantaneously restores the voltage over the 
capacitor by pumping charges to and from the plates. This charge flow is the contribution 
to the current and is in our case virtually equal to the charge trapping process. 
The current I is in fact the total measurement signal (including noise), before it is 
converted to a form (voltage) that is suitable for the lock-in amplifier. Before considering 
charge trapping noise in this signal, it is helpful to illustrate the relevant frequencies that 
are present in I, see Fig. 6.4. 

 
Fig. 6.4 Important frequencies on an approximately logarithmic scale 

 
The mechanical differential mode resonance frequency fd = 1.3 Hz divides the total 
frequency axis in two parts. The cross-hatched block in the low-frequency regime 
indicates the measurement band. It is bounded by f1 = 1 mHz and f2 = 1 Hz. The lower 
frequency limit follows from the use of the MEMS gravity gradiometer for space. The 
latter frequency is virtually equal to the measurement bandwidth B = f2 – f1. This  
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frequency region characterizes the slowly changing quantities in the current I. These are 
firstly the capacitive gap zeff and its time derivative dzeff/dt = dz/dt. They are affected by 
the slowly changing gravity forces, by a slowly changing dc component of the voltages V 
and by charge trapping. Because the power spectral density of charge trapping has 
typically a 1/f – character [13], it is especially strongly represented in the slow 
measurement band. Therefore, σt and dσt/dt belong to this frequency category. In the 
high-frequency regime there is the read-out frequency fV = ωV/2π with which the voltage 
V and its time derivative dV/dt oscillate. It must be clearly above resonance frequency fd 
in order to avoid that the flexible MEMS electrode moves along. Typical frequencies are 
of the order of 100 kHz, which suffices to suppress most 1/f – noise contributions from 
the electronic circuit. Two extra tick marks are drawn to indicate a 2B – region around fV 
which is important in the signal processing. It is finally noted that zeff is not affected by a 
fast moving voltage, other than by a small, constant amount, as stated by Eq. (2.79).  
Noise in σt manifests itself in the current I in a direct way (trapping current + built-in 
voltage motional current) and in an indirect way: zeff is affected by the parasitic force 
resulting from σt. These two mechanisms are discussed below.  
 
(b1) Direct trapping current noise 
 
The lock-in technique is very suitable to extract a desired measurement signal from a 
noisy background. This procedure is schematically represented in Fig. 6.5. 

 
Fig. 6.5 Lock-in filtering procedure 

 
The amplifying stage of the lock-in processing is not drawn here. First, the signal is led 
through a band-pass filter, which is tuned to the 2B – region around fV. For a strict 
theoretical lock-in amplifier this stage is not necessary, but in practice it is of great help 
to block noise signals from especially low frequencies. The passing signal is then 
multiplied by a possibly phase-shifted version of the reference signal. This transforms the 
signal to a double frequency signal plus a signal of the original low frequency. For this 
reason, the multiplicator is commonly called a demodulator. The resulting signal is led 
through a low-pass filter, after which only the “cleansed” desired measurement signal is 
obtained.  
As stated, the quantities σt, dσt/dt, zeff and dz/dt are characterized by terms proportional to 
sin(2πfBt), where fB represents the frequencies from the measurement band B: f1 < fB < f2. 
If we have a look at Eq. (6.17), we observe that the built-in part of the motional current 
and the trapping current contain only low frequency components. Furthermore, they are  
the only terms featuring σt or dσt/dt. These low-frequency signals are blocked by the 
band-pass filter. Therefore, the direct influence of charge trapping is not seen in the 
measurement. 
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(b2) Force noise  
 
The capacitor current and the first term of the motional current are modulated by V. As 
discussed above on the basis of Fig. 6.5, these terms survive all through the procedure 
and form the desired measurement signal. It remains now to be discussed how trapped 
charges σt influence a measurement (C or z) via the electrostatic force. This will first be 
done for a static situation. Then a first approach to a spectral analysis is provided.  
Trapped charges pull on the capacitor plates and thus change z or zeff. The electric field in 
the gap between the electrodes depends on their difference: 
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By applying Maxwell’s stress tensor on either electrode we get the total force: 
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Note again that d is the thickness of the dielectric layer. In  Eq. (6.19), d has been 
neglected with respect to z, which is justified for the here considered device, as d/z is of 
the order of 10-3. The trapped charge only contributes to the force noise in the VVbi and 
the Vbi

2 – terms. For all but the smallest voltages (millivolts), the former term dominates. 
Invoking Eqs. (6.8) and (6.13) leads to the maximal admissible trapped charge density 
σmax, which is half of the charge difference. It is strongly dependent on a static bias 
voltage V, see Eq. (6.20): 
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Here Γmin is the required sensitivity for the gravity gradient. The approximation made 
here is that the variable gap z is replaced by the constant unactuated gap z0. For very low 
bias voltages, Eq. (6.20) takes a form negatively linear in the voltage: 
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z mb
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d d A

εε ε ε Γ
σ ≈ − +          (V  “small”). (6.21) 

 
The comparison of the voltage is with respect to the Γmin term in the square root. But for 
already not too large voltages, the linear force term prevails clearly over the quadratic 
term, when the maximal admissible charge is reciprocal to the voltage: 
 
 2

0 min
max 2

mbz

dA V

ε Γ
σ ≈                                     (V  “large”) (6.22) 

 
Typical parameters for the gradiometer design with a comb drive of 1000 fingers are 
listed in Table 6.1. 
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Quantity Description Value 

   
Γmin Target gravity gradient detection treshold 0.1 Eötvös 

   
A Capactive area 1000 fingers × 10 × 100 µm²  
z0 Capacitive gap 2 µm 
d Thickness dielectric layer 2 nm 
ε Dielectric constant (silicon carbide) 10.2 (bulk value) 
m Mass 0.02 kg 
b Baseline 0.05 m 
f1 Lower measurement frequency bound  1 mHz 
f2 Upper measurement frequency bound 1 Hz 

 
Table 6.1 Target specification and typical design parameters 

 
The minimum force difference between the accelerometers that should be detectable is: 
 

∆Fmin = Γmin × b × m = 0.1 pN. 
 
Now Eq. (6.20) can be used to calculate the amount of parasitic charge to cause a force 
difference corresponding with the value of the target specification. In the ‘advantageous’ 
case that no bias voltage is present, this surface charge density is: 

 
σmax= 6.8 µC/m2 ~ 42 electrons /µm2. 

 
This amount of charge would give a built-in voltage of  
 

Vbi = 0.30 mV. 
 
Plotted in Fig, 6.6 is the parasitic surface charge density that is needed to provide a static 
force equal to the targeted minimum detectable force, for three different target 
sensitivities of the gradiometer. This quantity drops by an order of magnitude when a few 
millivolts of bias are applied, compared to the V = 0 situation. Note that the indicated 
charge densities are excess charges, as is  indicated in Eq. (6.20). The true charge 
densities on one particular electrode may be higher, if it is compensated on the other 
electrode. Meanwhile, the built-in voltage stands at it is. Discussion of the results is 
deferred to section 6.3. 
 
A detailed spectral analysis is less straightforward. Here, only a first sketch is provided 
for a treatment of this topic. It is remarked that charge movement is expected in the 
frequency regime of the measurement band. Diffusion times of charges in a dielectric 
reported by Felidj et al. [14], are typically 100 seconds, which corresponds to 10 mHz. 
This value is well within the measurement band. 
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Fig. 6.6 Maximum admissible electron density vs. bias voltage for a 1.0  E (thick), 0.1 E 
(medium) and 0.01 E (thin) gravity gradiometer. Dots indicate the values for zero bias 
voltage. 
 
Let us consider the extremes for the bias voltage. For V = 0 in Eq. (6.20) or Eq. (6.21), 
we see that the noise36 δ(Γ) on Γ constrains the admissible noise δ(σ²) in σ²: 
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In case of a bias voltage, Eq. (6.22) provides the direct noise constraint is on σ. 
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The symbol a is introduced for convenience to encompass all geometrical parameters. 
The voltage dependence of the noise has been left explicit. The gradient noise constraint 
is given as white noise, i.e. independent of frequency. As stated before, charge trapping 
noise power δ²(σ) however is typically associated to be 1/f – type. This hypothesis reads: 
 
 

2 ( )
c

f
δ σ = , (6.25) 

 
with c a constant and f the frequency. Furthermore, we assume that the measurement 
bandwidth B ≡ f2 – f1 is restricted on both sides, with f1 the lower frequency bound and f2  
the higher frequency bound. Three possibilities are listed to resolve this incompatibility 
of the white noise limit with the theoretical 1/f - noise spectrum. 

                                                 
36 The usual symbol for ‘noise’, ‘standard deviation’, ‘error’ etc., σ, would obviously lead to 
confusion in this context. 



6.1 Charge trapping in a gravity gradiometer 

 175 

 
Strictly general noise limitation 
 
The strongest demand is when the spectral charge trapping noise power density has to be 
lower than the target noise power density over the entire bandwidth. The charge trapping 
noise power density is highest at the lower frequency bound f1 of the measurement band. 
In this case, 
 2 2

12

( )a
c f

V

δ Γ
≤ . (6.26) 

 
Logarithmic mean frequency 
 
A less strong demand is if we allow the charge trapping noise power density to be higher 
than δ²(σ) below some intermediate frequency fint between f1 and f2. A possibility is to 
choose this frequency as the “logarithmic mean” of f1 and f2, i.e. f2/fint = fint/f1, which 
implies 

int 1 2f f f= . The demand on c is then 
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Integral mean 
 
A final logical choice would be to demand that the charge trapping noise power density 
integrated over the bandwidth be equal to the total target noise power: 
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This demand on the noise is the least stringent of the three. The three spectral limitations 
to charge trapping are shown in Fig. 6.5. At f = 1 mHz, we have as trapping noise (square 
root of the values in Fig. 6.7): 
 

δ1(σ) = 0.10 µC m–2 Hz–½ = 0.6 el.µm-2 Hz–½, 
δ2(σ) = 0.57 µC m–2 Hz–½ = 3.6 el.µm-2 Hz–½, 
δ3(σ) = 1.23 µC m–2 Hz–½ = 7.7 el.µm-2 Hz–½. 

 
The subscripts 1,2 and 3 correspond to the limitations 1,2 and 3 in Fig. 6.7. The first is 
comparable to the V = 0.01 V value of the middle line (0.1 E, ~1.5 el./µm²) in Fig. 6.6. 
The other two are higher. 
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Fig. 6.7 Admissable charge trapping noise power density for 1) ”strictly general noise 
limitation”, 2) “logarithmic mean frequency” and 3) “Integral mean” for a bias voltage 
of 0.01 V. For larger voltages, the density is proportional to V–2. In case of 0.1 V bias, all 
lines shift two segments down. 
 
 
6.2 CHARGE TRAPPING IN AN RF POWER SENSOR 
 
A finished project at the University of Twente was the development of a sensitive RF 
power sensor [15]. A common way of measuring power through a signal line is 
dissipating (some of) it in a resistor. However, in many applications the power through 
the line is important to know. This can be done with a capacitive MEMS sensor, which 
has the advantage over dissipative systems that it is independent of frequency over a very 
large band width. Therefore, it is suitable as a broad band (10 MHz – 1 GHz) through 
power sensor37.  
Several devices have been successfully realized (see Chapter 3 for more details). In Fig. 
6.8 a design of an aluminum bridge is shown. 
 
A signal with a power P and an rms voltage Vrms of a frequency far above resonance 
frequency (in the kHz range) is sent through a Coplanar Wave Guide (CPW). The power 
is related to the rms voltage via the characteristic impedance of the CPW (Z = 50 Ω) as in 
Eq. (6.29): 
 2

rmsV
P

Z
= . (6.29) 

 
The rms voltage causes a downward electric force Fel 
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C
F V

z
= − . (6.30) 

 

                                                 
37 Potentially, the extra capacitive element introduces reflection losses. This problem can be 
managed however by proper impedance matching further down the circuit. 
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Fig.6.8 Capacitive MEMS-based RF power sensor 
 
This force results in a small displacement ∆z = Fel/k of the overhanging bridge, with k the 
stiffness. The movement of this bridge is detected by readout electrodes parallel to the 
CPW38. This displacement in turn changes the capacitance of the sensor. The capacitance 
change ∆C is now related to the power through the CPW: 
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The first approximation sign indicates that the variable z and C have been replaced by 
their fixed, unactuated values z0 and C0. The same holds in fact for the CPW impedance 
Z, which depends on the capacitance. The second approximation sign relates 
displacement to change in capacitance, which are proportional for small displacements. 
For the last equality sign, Eq. (2.11) has been used. The reported sensitivity ∆C/P = αZ0 
of this sensor is a capacitance change of 100 fF per W [15]. Powers as small as 0.1-0.5 
mW could be detected. 
The theoretical thermo-mechanical noise δP of this device is given by [15,16]: 
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         [W/√Hz]. (6.32) 

 
Here A is the capacitive area, T the temperature, m the mass of the bridge and Q the 
quality factor of the bridge’s fundamental resonance. Realistic values for the featuring 
parameters put this noise floor at around 1 nW/√Hz, to which the target specification of 
this sensor was set.  
Now it will be calculated how much static trapped charge is needed to produce a 
displacement that corresponds to 1 nW power. Typical parameters for the power sensor 
design are listed in Table 6.2 
 
The voltage resulting from the specified minimum detectable power is: 
 

V P Z= ×   = 0.22 mV. 
 

                                                 
38 A more sophisticated design has feedback electrodes adopted, for keeping the bridge in a fixed 
position. This however entails a considerably more complex fabrication process. 
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Quantity Description Value 

   
δP Target power noise 1 nW/√Hz 
   

A Capacitive area 100 × 1800 µm² 
z0 Capacitive gap 1 µm 
D Thickness dielectric layer 2 nm 
ε Dielectric constant (silicon carbide) 9.1 (bulk value) 
L Bridge span width 300 µm 
Z CPW impedance 50 Ω 

 
Table 6.2 Target specification and typical design parameters 

 
This voltage is caused by a surface charge density trapped in the native oxide of the 
aluminum: 

0

2

V

d

εε
σ =  = 4.4 µC/m2 = 28 el./µm2. 

  
The achieved sensitivity of the sensor, limited by the actual mechanical properties of the 
membrane and the quality of the readout electronics, is in the order of 0.1 mW. In that 
case 

V = 70 mV, 
σ = 1.4 mC/m2 = 8700 el. / µm2. 

 
These numbers are compared with measurements in the next section (6.3). As stated, 
these are static values. Meanwhile, the RF power sensor can detect slow changes in 
characteristics of the high-frequency signal. The tempo of these changes has a speed limit 
at the mechanical resonance frequency of several kHz. As remarked in the previous 
section (6.1), charge trapping is especially abundant in the low frequency domain. In the 
same way as for the gravity gradiometer, this can cause trouble. For the dynamic 
interpretation of charge trapping, there is an approach possible similar to the one carried 
out for the gravity gradiometer. 
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6.3 DISCUSSION AND CONCLUSIONS 
 
In this chapter it has been calculated what amount of charges is admissible for a device 
under design (gravity gradiometer, subsection 6.1) and a completed device (power sensor, 
subsection 6.2). These two capacitive MEMS sensors have in common that they push the 
limits of until then achievable sensitivities. It has been demonstrated in this thesis that 
charge trapping is well noticeable for this kind of devices, even with extremely thin oxide 
layers. It has been regarded sensible to determine what quantities of trapped charge are 
allowed such that the device can still function according to the demands specified for it. 
The densities of trapped electrons for both devices are comparable, roughly 30-40 
electrons / µm², if calculated for their most stringent demands. These figures are excess 
charge densities. On one particular electrode the charge density can be much higher, 
provided the charge on the counter electrode is such that the parasitic force resulting from 
the net , or excess charge remains unaltered.  
For comparison: AFM Measurements by Sturm (section 5.2) indicate about 0.4 el./ µm2 
naturally occurring on aluminum oxide. This might sound reassuring, were it not for 
some objections. The first is that it is not clear to what extent the samples prepared for the 
AFM study are comparable to complete MEMS devices. The former undergo different 
fabrication processes, and under even more stable and cleaner conditions than MEMS 
devices. The second objection is that, according to what has been argued in Chapter 5, the 
counted charges may not be single charges but clusters of charges. Each cluster should 
contain many charges.  
A more reliable guide can be found when a comparison is made with measurements on 
actual capacitive MEMS devices, such as presented in Chapters 3 and 4 in this thesis. 
Most notably section 3.3 contains measurements on voltage offsets caused by trapped 
charges, performed on aluminum bridge power sensors. The structures in Chapter 4 are 
less sensitive, but the voltage offsets are nevertheless present. The voltage offsets can 
immediately be compared. The current section (6.3) indicates that voltage offsets in some 
range around 1 mV are permitted. Instead, offsets of several decivolts have been 
systematically encountered for aluminum electrodes with natural oxide. This crosses the 
noise limits by at least two orders of magnitude. Finally, for a sensor of 0.1 mW power 
resolution, the calculated amount of permissible charge gives rise to a voltage that is 
typical in MEMS practice. In this case, charge trapping may have had a serious part in 
limiting the sensor’s sensitivity. 
Spectral quantities of the admissible noise are less straightforward to compare. What can 
be said is that at the lower bound of the measurement band (1 mHz), which is closest to a 
static case, and at a bias voltage of 0.01 V, the spectral quantity is in the same order of 
magnitude as the static value for maximal admissible charge. This depends on the exact 
way that the (white) target noise for Γ  is interpreted along the 1/f – charge trapping 
noise. 
To conclude: charge trapping is a truly limiting factor for the devices discussed in this 
chapter. In order to achieve the aimed at sensitivities, serious attention must be paid to 
charge trapping. This is preferably done in the design. Dielectrics on electrodes should be 
avoided as much as possible. Even ultrathin native oxides can harbor more than sufficient 
charges to detune the sensor. If dielectrics are unavoidable, the ambient conditions and 
operation of the devices should be optimized.  
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APPENDIX 1  
 
 

FUNDAMENTAL MIRRORING 
PRINCIPLES AND POTENTIALS 

 
 
The electrostatics involved in the calculations of the interaction of a conducting AFM tip 
with a charged sample (Chapter 5), are considered in more detail by dissecting them in 
more fundamental building blocks. First,  three elementary image charge problems are 
recapitulated that are used as building blocks for the ultimate calculations. Then the 
issue of infinite reflections is arrived at. This is followed by recalling the principal 
conditions any solution to the electrostatic problem must comply, against which 
important principles of the multi mirror model are measured. 
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A1.1 BASIC MIRRORING PRINCIPLES 
 
As appeared in Chapter 5, the electrostatic problem under consideration is shown in Fig. 
A1. A conducting AFM tip, modeled by a biased (V) sphere (radius R), hovers in the 
neighborhood of the zenith of a local charge in a dielectric layer on top of a conductor. 
The bias voltage is generated by a charge qV = 4pe0RV located at the centre of the 
conducting sphere. There is a space a between tip and sample surface. The dielectric is of 
thickness d and has a dielectric constant ε. The trapped charge q is located a distance s 
above the metal/dielectric interface. 

 
Fig. A1. Electrostatic configuration 

 
The calculations for this problem involve three elementary image charge situations: 
 
1) Charge q floating a distance s above a grounded plain conductor  

 
Fig. A2. Charge above plain conductor 

 
The simplest case and a classic textbook problem [1]. In the area above the conductor, all 
electrostatic phenomena can be described by substituting the conductor by a charge 
valued –q at a distance z below the surface of the conductor. This is justified, for in the 
region z > 0 the boundary conditions (V = 0 at z = 0 and at infinity) are identical in both 
situations, as is the source. Hence the solution to Poisson’s equation is identical. In 
particular, for a charge q at (0, 0, s): 
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2) Charge q at a distance s from the centre of a grounded conducting sphere of radius R 
 

 
Fig. A3. Charge facing spherical conductor 

 
A charge q’= –Rq/s placed at a distance R²/s from the centre of the sphere on the line 
connecting the centre with the charge ensures a spherical null equipotential right at the 
boundary of the physical tip, guaranteeing the equivalence for Poisson’s equation and its 
solution for all space outside the sphere. 
N.B. a sphere maintained at some potential V is the same except for an additional charge 
of 4πε0RV at its centre. 
 
The derivation of these results is not in all texts provided, but is straightforward. Consider 
two charges along the z-axis, q at the origin and –ηq at (0,0,h): 
 

 
Fig. A4 two antipolar charges 

 
For any η > 0, there exists a collection of points at which the electrostatic potential 
vanishes. In general, the potential at point P is given by: 
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, (A2) 

Where 2 2r x y= + . For η = 1, V(P) = 0 is satisfied for z = ½h, when we arrive at a 
charge above a grounded plane, as described above. For η ≠ 1, V(P) = 0 is obtained in 
case of: 
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h h
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η
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. (A3) 

 
One recognizes the equation of a spherical shell with radius R and centre (0,0,zc): 
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Consequently, any pair of unequal, counterpolar charges produces a spherical surface at 
which the electrostatic potential reduces to zero. Given R and zc, as in the case of a charge 
meeting a grounded sphere, (A3) is inversed to: 
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h z

z
= − . (A5) 

 
Q.E.D. Finally, if we let u the distance between the edge of the sphere and the origin, we 
have zc = u + R. In the limit of an infinitely large radius (R → ∞), the charges become 
equal in magnitude (η → 1) and the image charge will be located at h → 2u, when we 
have again a charge ‘above’ a grounded conducting plane. 
 
3) Two semi-infinite dielectrics with a charge 

 
Fig. A5. Charge in adjecent semi-infinite dielectrics 

 
In both regions I and II meaningful electrostatics can and must be described. It is 
demanded that the following boundary conditions are met: 
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int . int .

0
z z

V V

x x↑ ↓
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The first (A6a) states that any discontinuous ‘jump’ in the displacement field 
perpendicular to the interface results from a sheet of  interface charge σint (not induced) at 
that interface, which will be taken zero from here on. The second (A6b) demands the 
parallel electric field to have continuous magnitude at the interface. Here x is taken to be 
the parallel coordinate. The motivations for these boundary conditions are derived further 
down the Appendix. 
 
In region II, where the source, or ‘free’ charge resides, the electrostatic problem is solved 
by assuming an extra single point charge in region I, valued 
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at the spatially mirrored position, just like a charge above a plane conductor. An observer 
in region I will not sense this image charge. One can never add charges in a region where 
one is calculating the potential, as this comes down to unduly modifying the source in 
Poisson’s equation. For this observer it is however possible to add or alter charges in 
region II. Indeed, by letting him see a charge of magnitude 
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 (A8) 

 
at the position of the original charge, the potential in region I connects to that in II (with 
the two charges) as prescribed by conditions (A6ab). 
 
Reflections 
 
At this point, all sample-related reflections can be described. Tip-related reflections are 
further largely left at rest in this text, apart from the already treated elementary image 
charge problem. 
Started with is the problem of a charge above a dielectric layer on a conductor, see left-
hand side of Fig. A6 (the situation is turned 90° clockwise in this figure). 

 
Fig. A6 Transformation hypothesis 

 
This situation is relevant, for it is the starting point for describing the interaction between 
a biased tip and a grounded sample (without parasitic charge). The hypothesis is that the 
description of the electrostatic problem everywhere for which z > 0 (in and above / right 
of the dielectric slab) can be equivalently done by considering the situation depicted on 
the right side of Fig. A6, which are two antipolar charges at both sides of a dielectric slab 
of twice the original thickness. This is motivated by that in both cases the z = 0 plane 
constitutes a zero-equipotential. For the region z > 0 this boundary condition is still the 
same. A little more on this later. If swift inspection is not sufficient to convince the reader 
of the admissibility of this procedure, it should be borne in mind that a piece of dielectric 
material can be thought of as a large collection of positive and negative charges, and 
which shows polarization in response to an electric field. This complete collection of  
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charges is mirrored. In fact, the metal mirror of Fig. A2 is just applied here for many 
charges. 

 
Fig. A7. Charge outside dielectric slab 

 
After the transformation proposed in Fig. A6, the problem can be subdivided further by 
considering each of the two charges (original and ‘virtual’) apart. Starting with the stem 
charge q (Fig. A7), there are two types of reflection of importance: 
 
1) Direct dielectric mirror 
 
The special case of region II (Fig. A5) being vacuum corresponds to the case under 
investigation. This puts ε2 = 1, which reduces Eq. (A7) to: 
 
 

'q kq= −    with   
1

1
k

ε −
≡
ε +

    and     1ε ≡ ε . (A9) 

 
In this special case, we recognize the Ludeke-Cartier definition (Eq. (5.30), Chapter 5) in 
Eq. (A7) by identifying q”= q/εeff, which illustrates the statement that εff is modifying 
apparent source strength rather electric field. We also see that situation Eq. (A2) is in fact 
a special case of situation Eq. (A5) with ε2 = 1 and ε1 → ∞ in Eq. (A6) or just ε → ∞ in 
Eq. (A8). This virtual charge Eq. (A8) can be located inside the dielectric, region II, but 
an apparent geometrical location in I is entirely possible for thin dielectrics or large 
separations of the source charge with the dielectric, which is does not of influence on its 
apparent strength. 
 
2) Infinite reflections 
 
The second effect is more complicated and leads to infinitely long chains of virtual 
charges. For visualization it might be helpful to recall what one is seeing while sitting in 
a train, representing the dielectric slab. A passenger inside sees his many reflections in 
the windows, that act as semi-permeable mirrors. This effect applies also if this passenger 
takes an object outside the train as source of reflection. An observer standing on a 
platform, looking into the train (Fig. A8), will see a direct reflection in the front window 
Eq. (A8), and if he looks deeper into the rear window, he will see many more. 
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Fig.A8. Observer with reflections in two train windows 

 
We start with an observer in region II (Fig. A7, the dielectric slab), who perceives a 
charge of apparent strength (1 + k)q (in Eq. (A7), put ε2 = 1) at the location of the original 
source, as described above. For this observer, this charge is mirrored in the I/II interface, 
again corresponding to the dielectric mirroring principles mentioned above. See Fig. A9. 
This observer sees this new virtual charge again mirrored in the II/III interface. This is 
picked up by the I/II interface again until observer II has infinitely many charges at both 
hands. An observer in III cannot see the charges projected in the III, but he does notice 
the charge chain in I, be it with an extra factor (1 + k) compared to how II sees them. 
 

 
Fig. A9. principle of infinite mirroring 

 
According to an observer in III, these charges have values 
 
 2 2 1(1 ) n

nq k k q−= − ;    n ≥ 1, (A10) 
 
so are similar in sign to the original source charge. They reside on positions 
 
 zn = 2d – 4nd – s;        n ≥ 1  (A11) 
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with d the thickness of the physical dielectric slab (so region II has width 2d) and s the 
coordinate of the source charge. In Fig. A9 the first of these is represented by the leftmost 
black dot. The following are located at west-ward positions with a periodicity of 4d. 
 
Metal mirror 

 
Fig, A10. Mirrored charge outside dielectric slab 

 
A charge, valued –q (minus q), in domain I will be observed in III with a double ‘filter’: 
 
 qIII = (1 + k)(1 – k)(– q)I .   (A12) 
 
Also for this charge goes that it gives rise to infinite chains of virtual charges. Again, in 
III  only the chain in I is observable. For III, these charges assume values 
 
 2 2(1 ) ( )n

nq k k q= − − ;       n ≥ 0 (A13) 
and positions      
 zn = – 4nd – s;        n ≥ 0  (A14) 
 
The original source Eq. (A12) is included in these series for n = 0. We have now 
demonstrated how a charge in III, e.g. bias voltage, mirrors directly in the dielectric, 
forms virtual charge chains and mirrors in the metal. 
 
Charge in dielectric 

 
Fig. A11. Charge inside dielectric slab 

 
A charge trapped in the dielectric (Fig. 8) is the object of research. It is the most 
complicated case: for an observer in II this produces two infinite charge chains, see Fig 
A12. 
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Fig. A12. Bilateral infinite mirroring 

 
The start to read Fig. 9 is at the charge at position z = s, inside the dielectric slab on the 
right of the dotted z = 0 line. For an observer in the slab (II), this charge is mirrored in the 
I/II interface as well as in the II/III interface. These two mirrors are each the start of 
charge chains in an already known manner. The source charge at  z = s has also a mirror 
in the z = 0 plane because in reality there is still the metal electrode. This ‘metal mirror’ 
charge at z = –s starts two infinite charge chains of its own. Again, for an observer in III 
it looks a bit less ‘messy’, as he sees only the semi-infinite charge chains at z < 0. 
For the source charge at z = s we have:   
 
 2(1 ) n

nq k k q= − ;           n ≥ 0 (A15a) 
 
for one chain (which includes the original source charge for n = 0), and  
 
 2 1(1 ) m

mq k k q+= − ;        m ≥ 0 (A15b) 
for the other, at  positions 
 zn = –4nd + s ;               n ≥ 0 (A16a) 
and  
 zm = –2d – 4md – s;      m ≥ 0 (A16b) 
 
A related problem, the potential function of a charge kept between parallel conducting 
plates (standard capacitor), has been described amongst others in [2]. In that case, the 
distribution of electrostatically opaque regions is reversed and there was not any 
dielectric taken into consideration. 
 
As remarked, this charge is metal-mirrored in the z = 0 plane; its resulting chains have 
charges:  
 2(1 ) n

nq k k q= − −  ;     n ≥ 0, (A17a) 
 2 1(1 ) m

mq k k q+= − − ;   m ≥ 0 (A17b) 
at  positions 
 zn =  –4nd – s ;           n ≥ 0, (A18a) 
 zm=  –2d – 4md + s;   m ≥ 0 (A18b) 
 
The potential of these charges satisfies Poisson’s equation and the appropriate boundary 
conditions, provided that m and n approach infinity, as will be demonstrated later. 
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It has to be noted that an observer in II perceives different charges and of different 
magnitudes than an observer in III. Obviously, the potential function in II has to be 
derived from the charges as observed in II.  
It is insightful to investigate what happens in limiting cases. Let us consider the situation 
in Fig. A5. If there is no dielectric (ε = 1 so that k = 0), but still a metal electrode, the 
dielectric mirror Eq. (A9) of the charge disappears, so do the chain charges Eq. (A10). 
What remains is the metal mirror charge Eq. (A12), which reduces to its canonical value 
of –q. The other extreme is the dielectric slab being a metal itself, which corresponds to ε 
approaching infinity and k becoming 1. The dielectric mirror Eq. (A9) becomes a metal-
mirrored image, while again the charge chains Eq. (A10) and the original metal mirror 
Eq. (A12) leave the stage. 
 
 
A1.2 POTENTIAL FUNCTIONS 
 
On a fundamental level, the solution to the electrostatic problem of the charged dielectric 
probed by a tip must meet Poisson’s equation. The total problem can be chopped up into 
separate problems, as demonstrated above: charge above a dielectric slab (representing a 
bias charge), charge behind a dielectric slab (the metal mirror of the bias charge) and a 
charge inside the dielectric (the trapped charge). The metal mirror of the latter is in the 
same region, only of opposite sign and on the mirrored location. 
In all cases, the electrostatic potential function satisfies: 
 

2 2 2
2

2 2 2

0

V V V V
x y z

∂ ∂ ∂ ρ
∇ = + + = −

∂ ∂ ∂ εε
,with ( , , )i i i i

i

q x x y y z zρ = δ − − −∑ . (A19) 

 
Here, qi is the charge, located at (xi, yi, zi) which can be a bias charge, its metal mirror, or 
a trapped charge or one of its reflections. ε is the relative permittivity of the medium in 
which Poisson’s equation is considered. The verification that the potential functions 
given below obey Eq. (A19) involves cumbersome mathematics that are neither special 
nor very enlightening and not thought worth reproducing, as in fact the provided 
potentials are just those of a collection of point charges. 
Then there are certain boundary conditions that must be met. Firstly, the potential of a 
bounded collection of charges of finite net magnitude must vanish at infinity. The total 
potential functions are summations of single point charge potentials that individually 
obviously drop off to zero at inifinity (provided ‘zero’ is chosen as reference value there 
of course).  
That the infinite set of reflected charges that is encountered in all situations is not in 
disharmony with the condition of ‘finite net magnitude’ might not be immediately clear. 
Let us consider the situation of a charge q above the dielectric, as treated underneath Fig. 
A7. This charge has a direct mirror in the dielectric –kq and an infinite series of reflected 
charges 
 2 2 1(1 ) n

nq k k q−= − ;    n ≥ 1. (A20) 
Because  

0

1

1
n

n

p
p

∞

=

=
−

∑  0 1p∀ ≤ < , 
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and k2 < k < 1, 
 

2 2

1 0

(1 ) ( )n

n
n n

q k kq k kq
∞ ∞

= =

= − =∑ ∑ . (A21) 

 
Not only has the (standard) infinite sum a finite value, as required, also is the total 
amount of charge, original and virtual, unaltered: The dielectric mirror and the total of 
reflected charges add up to zero, as expected. Note that this is unlike mirroring a point 
charge in a conducting plane kept at a certain potential. In this case the total virtual 
charge is of the same magnitude and opposite sign as the stem charge, and equals the 
charge the connected battery has to add or remove in order to maintain the potential of 
the conductor in presence of the external point charge.  
Less straightforward is how to encompass the requirements at the surface of the 
dielectric. The derivation of the proper boundary conditions [8, pp 16 -18] starts with 
Gauss’s law and Faraday’s law: 
 ∇ ⋅ = ρD , (A22) 
 

t

∂
∇× = −

∂

B
E . (A23) 

 
It is stressed that ρ contains only the free charge, not bound charge that originates from 
polarization of matter. These equations can be conveniently cast into integral form by: 
 
 n̂ da dΩ Ω∂Ω Ω

⋅ = ρ Ω∫ ∫D , (A24) 
 
 

ˆ
C

C C CC S
d n da

t

∂
⋅ = − ⋅

∂∫ ∫
B

E l . (A25) 

 
The divergence theorem and Stokes’ theorem are applied here respectively. In Eq. (A24), 
Ω is the volume of a Gauss surface (or ‘Gaussian pillbox’) encompassing thin slabs of 
two adjoining, not necessarily linear40, media; see Fig. A13. The circular41 sides are 
parallel to the interface. The box is assumed sufficiently small to uphold a notion of 
parallel even in case of a curved interface. n̂

Ω
denotes an outward pointing normal unit 

vector perpendicular to the Gaussian surface and the interface. The surface of this box is 
denoted with’ ∂Ω ’. The left-hand side integral is over surface elements daΩ of which ∂Ω  
consists, whereas the right-hand side integrates the charge density ρ over volume 
elements dΩ. In Eq. (A25), an Amperian contour C, straddling the boundary between the 
media, constitutes a closed path the electric field E is integrated over at the left-hand side. 
At the right-hand side, the time-derivative the flux of a possibly present magnetic field is  
integrated over the area SC traced out by the Amperian loop, along the normal ˆ

Cn of that 
area.  

 

                                                 
40 In electrostatics, a medium is called ‘linear’ if the polarization field is proportional to the total 
electric field. 
41 ‘Circular’ was chosen for easy recognition in the corresponding figure. In fact, the actual shape is 
immaterial for the argument. 
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Fig. A13 Adjacent materials with Gaussian surface and Amperian loop 

 
Concerning Eq. (A24), let us consider the limit of an infinitely shallow volume. For the 
left-hand side this means that the sides perpendicular to the material interface become 
infinitely thin, resulting in that this contribution to the integral vanishes. What is left is 
the contribution of the parallel parts. On the right-hand side, what remains is any sheet 
charge σ precisely at the boundary. Let us decompose the total enclosed charge into a 
proper volume charge ρΩ and a proper interface charge ρint. 
 
 

intΩ
ρ = ρ + ρ ,           

int int
( )z zρ = σδ − . (A26) 

 
The interface charge is singular with respect to a spatial coordinate z perpendicular to the 
material interface, right at this boundary zint. Then Eq. (A24) becomes: 
 
 

// //// //
n̂ da daΩ Ω Ω∂Ω ∂Ω
⋅ = σ∫ ∫D , (A27) 

 
Where the integration is now only over the parts of the area parallel to the interface, 
designated by //. Note that on the right-hand side, the volume integral is shrunk to a 
surface integral. 
Concerning Eq. (A25), the limit of an infinitely tight Amperian loop is regarded. For the 
right-hand side, this means that the integration area is reduced to zero and hence the 
complete integral (as the integrand is finite), resulting in: 
 
 

////
0CC

d⋅ =∫ E l . (A28) 
 
On the left-hand side, only the parallel component of the contour is left as integration 
part. Consequently, the resulting boundary conditions for the perpendicular and parallel 
fields become: 
 

2 1D D
⊥ ⊥
− = σ , (A29) 

 
2 // 1// 0E E− = . (A30) 
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The material domains are indicated by numbers. The fields are evaluated at the interface, 
so meant is here D2 = D2(z = zint). Equivalently, in terms of the potential: 
 
 

2 1
2 1

int intz z z z

dV dV

dz dz−> −>

ε − ε = σ , (A31) 

 
 

2 1

int int

0
z z z z

dV dV

dx dx−> −>

− = . (A32) 

 
Here x denotes the generalized coordinate parallel to the interface. In this context, there is 
no sheet of free charge present, so σ = 0 in Eq. (A30). 
 
Charge above dielectric slab 
 
To start with, the situation of Fig. A9 is considered, with a charge above a dielectric slab. 
This situation serves as the basis for a tip at a certain bias voltage relative to the sample. 
As has been shown in, this situation gives rise to an infinite series, or chain, of virtual 
charges. Their apperent strengths depend on whether the observer is located inside or 
outside the dielectric slab. On top, the dielectric observer sees charges in the vacuum 
region. 
The stem charge, or original charge, is in the potential functions below assigned a 
location (0, 0, s). 
In the present case, the total electric potential (in 3D) is given by:  
 
Region II: 
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00

1 1
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q
V

x y z n d s
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∑ . (A33) 

 
An observer in II sees the original charge (n = 0) plus all mirrored charges reflected back-
and forth.  
 
Region III: 
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∑ . (A34) 

 
An observer in III sees the original charge (the first term), its direct dielectric mirror (the 
second term) and all  (and only those) reflections below the  z < 0 plane (hence the ‘2n’ 
instead of  ‘n’).  
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Metal mirror 
 
The above potentials do not yet include the mirroring in the metal-dielectric interface. 
This latter effect is encompassed by mirroring the complete situation, both dielectric 
layer and charge, in the z = 0 plane. The potentials for the metal-mirror charge (Fig. A10) 
read: 
 
Region II:  
 

2 2 2
00

1 1

2 ( 1) 1 ( ( 1) ( 2 ))

n

r
II n

nr r

q
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x y z n d s

∞
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Region III: 
 2
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Charge in dielectric 
 
For a description of this situation, see Fig. A11 and corresponding text. In this case there 
is no single, ‘direct dielectric mirror’ like in the case of a charge above the dielectric. 
However, a single trapped charge now gives rise to two infinite series of reflections. 
Again it applies that an observer in III does not ‘see’ any virtual charges for which z > d, 
as an observer in II does. 
 
For the original trapped charge q the potentials are given by:  
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  (A38) 
And for the ‘metal mirror’ –q: 
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(A40) 
 
Now all that’s left is to demonstrate that these potentials meet the boundary conditions 
Eqs. (A31) and (A32). This will be done for the situation of a charge above a dielectric 
slab only; for the other situations similar methods apply. For slightly easier writing, 
cylindrical coordinates are used: 2 2r x y≡ + , and work with a derivative d/dr. For the 
derivative to the vertical coordinate of the potential in region III, we have 
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And for region II: 
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The first two terms of the derivative of VIII are from the original charge and its direct 
dielectric mirror. They exactly add up to the first term of the derivative of VII. Higher 
order terms of ∂VIII/∂z each correspond with two terms of ∂VII/∂z, as the reader can verify 
for himself, for example for the 3d + s terms. The fact that both series extend to infinity 
guarantees that the boundary condition for the z-derivative is met. A comparable pattern 
is encountered for the boundary condition for the horizontal coordinate: 

( ) / ( ) /II IIIV z d r V z d r∂ ↑ ∂ = ∂ ↓ ∂ , which is not reproduced here.  
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APPENDIX 2  
 
 

AFM ELECTROSTATICS: 
MISCELLANEOUS 

 
 
A2.1 ELECTROSTATIC ENERGY OF A SYSTEM OF 
CONDUCTORS AND REFLECTION POTENTIAL 
 
In Chapter 5, the principle of mirroring in the tip has been explained. The force on the tip, 
and from it the force gradient, is in principle calculated by summing all interactions that 
each charge in the tip (N in total), virtual and real, has with each of the ‘outside-tip’ 
charges. This calculation is quite cumbersome and longwinded, as the calculation time 
scales with N². More efficient would be to invoke the energy of the system, which scales 
only with N. For a particular charge configuration, this can be calculated. A small 
displacement of the tip ∆z will change the total energy of the system ∆U, which leads one 
to determine the force as  
 

z

U
F

z

∆
= −

∆
. (A43) 

 
The force gradient is then again extracted by a differential of the force. This demands to 
determine the energy at three closely spaced points with high accuracy. This appendix 
will digress on the energy of the tip-charge system. To this end, started is with a system 
of n conductors at potentials Vi and charges Qi and space charge distributions ρj spread 
between them, possibly embedded in a dielectric, see Fig. A14 
 

 
Fig. A14  System of conductors at potentials Vi and space charge densities ρi. 
 
For this system, the energy of a volume Ω is given by: 
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U V x x d V Q
=Ω

= ρ Ω + ∑∫ , (A44) 

 
as derived in [4]. In our case, we consider the situation of Fig. A1 in Appendix 1, with 
one grounded electrode and the other electrode, the tip, at potential V. Here, the space 
charge ρ is a point charge q at point S = (0, 0, s): ρ = qδ(0, 0, s). It is posed that the total 
charge Q on the tip has linear contributions from both the bias potential and the free 
charge q:  
 ( , )Q V q CV aq= + , (A45) 
 
In which C and a are constants, defined by geometry. The former is the (differential) 
capacitance of the system, defined by C = ∂Q/∂V. Eq. (A45) is based on the superposition 
principle and of the fact that potential scales with charge, which is a consequence of the 
former. According to the same principles, we can unravel the potential at S: 
 
 ( , ) /SV V q bV q c= + . (A46) 
 
Again, b and c are again constants. The first term of Eq. (A46) is due to the bias potential 
only; the second term could be interpreted as “reflection potential”: the presence of the 
charge q at S induces charge on the electrodes, which contributes to the potential at S42. 
This shows that q is not a passive onlooker, or independent test probe, but contributes 
itself to the electrostatic landscape (potential) it experiences.43 It is tempting to therefore 
entitle c a ‘reflection capacitance’. Now, we invoke the energy equation Eq. (A44) for 
our situation, which requires considering just one electrode with nonzero potential: 
 
 1 1

2 2
( , ) ( , ) ( , )SU V q VQ V q qV V q= + . (A47) 

 
In order to collect more information about the constants a and b, the differential of Eq. 
(A47) is taken and re-integrated. Proceeding thus and grouping terms in dq and dV 
provides: 
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In Eq. (A48), “   ” denotes functional dependence on V and q. Integrating Eq. (A48) again 
yields: 
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(A49) 
 
 

                                                 
42 That is, disregarding the infinite (singular) potential at S due to q directly. 
43 This reminds of the widely spread philosophical notion that a person is not a passive figure, just 
perceiving (receiving?) a reality independent of him, but in fact himself influences (some would 
even say creates) the world he experiences. 
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According to Eqs. (A45) and (A46), the partial derivatives are constants and can be taken 
outside the integrals.  
Inserting Eqs. (A45) and (A46) into Eq. (A49) of course returns Eq. (A47). In an 
operational sense, assume we start with no charge and no bias voltage. To arrive at the 
final situation, we could first raise the bias voltage to its final value, which gives the 1st 
and the 2nd term, and then increase the free charge q to its final value, building up the last 
three terms of Eq. (A49). During the whole process, the 3rd term remains zero. 
Alternatively, we could first increase the free charge q, which creates the 5th and 6th 
terms. After this, the bias potential is raised: terms 1-3.  Now the 4th term stays zero. This 
implies that the contributions of the 3rd and 4th terms must be the same. Consequently, the 
partial derivatives heading the integral signs, and hence a and b, are equal. On the basis 
of this argument, we can now write for the energy: 
 
 

2 2

21 1
arg , , ,2 2, ,

( , ) ch e bias qV S bias S reflcap V refl q
U V q U U U CV qV qV−= + + = + + . (A50) 

 
The energy hence consists of three contributions. The first one is from the pure capacitor. 
The second term is the interaction between the trapped charge and the bias voltage. Here 
VS,bias = bV is the potential in S due to the bias voltage only. The third term finally denotes 
the energy it requires to build up a charge q in the presence of grounded conductors. The 
reflection potential Vrefl is given by q/c, see Eq. (A46). The validity of (A50) is easily 
checked for the force on a point charge in the presence a grounded sphere or infinite 
metal or dielectric, in which cases only the reflection potential applies. A biased sphere is 
then the next topic.  
One little trap is worth mentioning however. Consider the textbook example of Fig. A2, 
with a charge above a grounded plane. The reflection potential at the charge’s location 
here is given by 04 /(2 )reflV q sπε = . If we now calculate the force on q by 

1 2 2

0(8 ) /d
reflds

F qV q s−= − = − πε , we overestimate the force by a factor of 2. The mistake 
made is that in this case, moving the charge over a distance ds moves also the mirror at 
this distance. In fact, one should keep the mirror at a fixed position –s and the charge at a 
variable position z. Now 1 2 1

0(4 ) ( )d d
refldz dz

F qV q s z− −= − = − πε +  and replacing z s→  
afterwards yields the correct result. Systems involving more conductors are not so trivial. 
The numerical task lies now in establishing the values and positions of ‘all’ charges and 
their reflections. And derive from that the capacitance C, the bias-related potential VS,bias 
at the location S of the trapped charge and finally the reflected potential VS,refl After the 
intermezzo, an attempt is made to approximate these quantities by closed-from 
expressions. 
 
 
INTERMEZZO: INFINITE FRACTION AND RECURRENCE RELATION 
 
Calculations in the next part of this appendix make use of the following recurrence 
relation: 
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so that  
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 (A52) 

 
etcetera. In general, ri is an ith order continued fraction. For physical reasons, we want the 
recurrence relation Eq. (A51) to converge, i.e. the successive terms must stabilize at some 
fixed value r. This happens when ri+1 = ri, which has the solutions 
 
 21 1

2 2
4r p p

±
= ± − , (A53) 

 
with the properties that r+r– = 1 and r+ + r– = p. The limit is independent of the first ‘seed’ 
term, r0. A convergence limit exists only when |p| ≥ 2. We see that ri+1 < 1 for ri < p – 1. 
ri+1 > 1 will be in cases of ri > p – 1. In this case however, ri+2 will be < 1, so that all 
subsequent elements (for i > 3) will be smaller than 1. Consequently, the convergence 
limit is r– < 1, shortly written r. Now, we may define a series δi, which denotes the 
difference of each next element ri+1 with the convergence limit. By this definition:  
 
 ri+1 = r – δi. (A54) 
 
Combining this with the recurrence relation Eq. (A51): 
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in which definition Eq. (A54) has again been invoked. Hence 
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We can write a similar equation for δi–1, so that 
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and more in general  
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Here, according to (A55),  
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Now the ith element of the δi is known, we have consequently a closed form for the ith 
element of the r series. Combining Eq. (A58) with Eq. (A54) and rearranging yields: 
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Here, the λ - symbol has been introduced to slightly facilitate notation and to highlight 
the independent significance of the first element r0 for the ri series. A special case we 
encounter for λ = 0, when β simplifies to  
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 so that  
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A2.2 APPROXIMATIONS FOR ELECTROSTATIC ENERGY IN 
THE AFM SYSTEM 
 
The three relevant interactions are drawn in Fig. A15.  
 

 
Fig. A15. Tip with bias charge QV, mirrored bias charge QV’. The dashed area is a 
dielectric layer. In the coming discussion, its influence is not yet treated. Its 
incorporation is covered later. The layer contains a trapped charge q, which is mirrored 
in the metal q’. Both have images in the tip q* and q’* respectively. The basic 
interactions are indicated with dashed and solid curved lines. These are VV, qV and qq: 
the bias interaction of the tip with the sample (charge-charge), the interaction between 
the trapped charge and the bias charge (dipole-charge)  and the interaction of the 
trapped charge with its image in the tip (dipole-dipole).  
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A2.2.1 Capacitance (VV) 
 
In order to calculate the first term of the energy U, Eq. (A50), we need to know the 
capacitance of the system. In principle this is done by all bias charges in the tip, divided 
by the potential of the tip (radius R). The latter can be represented by a suitable charge 
QV = 4πε0RV. This bias charge is mirrored in the z = 0 plane. The ith charge in the tip Qi at 
position zi results in a mirror Qi in the z = 0 plane, at position zi’:  
 
 'n nQ Q= − ,                 'n nz z= − . (A63) 
 
This mirror is imaged again by the tip, resulting in the i+1st charge:  
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Here zt is the position of the centre of the spherical tip. The first few tip charges are 
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We define 
 2 tz

p
R

≡ , (A66) 

so that p > 2. Then we can write 
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in which one immediately recognizes a pattern of a continued fraction. The next step is to 
define 
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as the ratio between two successive charges. If we apply this to Eq. (A67), we see that 
these ratios obey the recurrence relation 
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which is the one treated in the intermezzo, see Eq. (A51). As we have r1 = 1/p, r0 = λ = 0 
applies, which is consistent with (Eq. (A51), formula for r in intermezzo). For the nth 
charge we have: 
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This works also in case of n = 0: for n < i, we obtain the so called “empty product”. This 
means “no multiplication takes place”, and returns the “multiplicative identity”, which is 
1. We obtain Q0 = QV, as desired. Meanwhile, 
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All numerators and denominators cancel, save one of each, so that the product Пn 
evaluates explicitly: 
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For general λ this result reads: 
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For the capacitance, it is required to sum the Qn as defined by Eqs. (A69) and (A71). The 
summation cannot be carried out exactly, but we can estimate it by comparing it to the 
geometric series. Because 0 < r < 1, for the denominator we have 0 < r2n < 1, while in the 
numerator rn can be summed explicitly. Therefore  
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The general series (A71) converge approximately with powers in r, but can be rewritten 
in a form that converges faster, by expanding it in powers of y, where y ≡ rn: 
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This series converges roughly with powers of β0

-1, which means a reduction of each term 
with a factor r2 instead of r.  
In many cases, roughly when tip-distance ratio p = 2zt/R > 2.344, the capacitance of the 
system can be approximated by taking only the first term of Eq. (A73). We have then 
explicitly: 
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For a very small radius (R ↓ 0) or a very large distance (zt → ∞), we see that p = 2zt/R 
extends to infinity (and hence r ↓ 0). The capacitance (A74) reduces to the spherical 
capacitance 4πε0R. For closer spacings, larger radii or just enhanced accuracy, a second 
term from Eq. (A73) can be added: 
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The capacitance and hence the capacitive energy Ucap = ½CV2 can therefore well be 
approximated by a closed-form expression. 
It is however stressed that for close approximations (2 < p < 3), these formulas are 
inadequate for deriving the force. The force is the spatial derivative of the capacitance. 
The provided capacitance approximations however underestimate the relatively strong 
upwards curvature of the capacitance close to the surface. This will be demonstrated later 
in the context of dielectrics. For a force calculation, it is therefore advised to 
(numerically) carry out the full sum in Eq. (A73).  
 
 
 
 
INTERMEZZO: PASCAL’S TRIANGLE, FIBONACCI, GOLDEN RATIO 
 
The Qn can alternatively be described in nth order polynomials Pn in the variable p: The 
reader can verify that applies: 
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etcetera. 
 
 

                                                 
44 This number is admittedly arbitrary. It applies for example for a tip of 100 nm radius hovering 
with a spacing of 30 nm (ztip = 130 nm) above a metal surface. 
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The first few polynoms Pn(p) are: 
 

1 
p  

2 1p −  
3 2p p−  

4 23 1p p− +  
5 34 3p p p− +  

6 4 25 6 1p p p− + −  
7 5 36 10 4p p p p− + −  

8 6 4 27 15 10 1p p p p− + − + . 
(A76) 

According to Eq. (A68), we can write: 

 
 
Fig, A16 Pascal’s triangle supplies 
coefficients for capacitive polynomials 
Pn(p).
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The polynomials Pn(p) are alternating even or odd and the successive terms in each 
polynomial have alternating signs. The coefficients are recognizable as numbers in 
Pascal’s triangle. The nth diagonal represents the nth power of p, showing the absolute 
value of the corresponding coefficient. The polynomials are built up of ‘flat diagonals’ in 
the triangle. In Fig. A16, the 3rd, 5th and 8th degree capacitance polynomials are shown. 
Note the alternating signs for the coefficients. The coefficient for the leading power term 
is always +1. Because Pascal’s triangle is made up of binomial coefficients an alternative 
formulation for Qn is: 
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It is known that the sums of the numbers on the highlighted diagonals in Fig. A16 form 
members of the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … which is defined by 
that every entry is the sum of the previous two. Indeed, one easily verifies for sample 
cases: 
 / 2
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− +
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in which Fj is the jth Fibonacci number (F0 = 0). This perhaps remarkable property of the 
tip charges is no coincidence. Recall that the Fibonacci sequence can be generated by the 
golden ratio 1 1

2 2
5 1.618ϕ = + ≈ : 
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One defining description of the golden ratio is the continued fraction 
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, 

 
which reminds us of the relative magnitudes of the successive tip charges (Eqs. (A52) 
and (A67)). 
 
 
A2.2.2 Charge – bias interaction 
 
For the second energy-term, describing the interaction of the trapped charge with the 
applied bias voltage, many of the so far derived results can be used. For the bias potential 
in S, the required ingredients are firstly the bias charges in the tip and their antipolar 
mirrors in the flat electrode: the z = 0 plane. These are known. Secondly, the positions of 
these charges must be determined or, more precisely, the distances between S and these 
charges. The locations of the tip charges up to second order have already been given in 
Eq. (A65). In general, it can be seen that the positions of the bias charges in the tip obey 
 
 (0)n t nz z Rr= − , (A80) 
 
where the rn(0) obey the recurrence relation (A51). The rn(0) are explicitly given by Eq. 
(A62). In the limit of n → ∞, the zn stabilize on z∞ = √(z2 – R2). Now, for the potential in 
S we write 
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in which Φn(s) are dimensionless potential functions. Now consider the case s = zt – R, 
which is located at the edge of the tip. Then 
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So that  
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On the tip, obviously VS,t = V; consequently the infinite sum evaluates to (p – 2)–1. This 
result can be expressed by a very simple function of the first term: 
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Thus at the tip, the infinite sum can be exactly expressed. For the trivial case s = 0, 
(where VS = 0), the same approach applies. At both endpoints of the range 0 < s < zt – R, 
working with only the first term of the potential gives an exact result. It is therefore 
proposed that for the whole range of s, 
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This simple looking expression has desirable properties. One can verify that at the points 
s = 0 and s = z0 – R the correct potential is returned. The potential vanishes if the tip is 
very remote (zt → ∞). If we write z = R + a, with a the distance between the edge of the 
tip and the metal, we see that for infinite tip radius R → ∞ we arrive at VS → sV/a, the 
potential at S in a parallel plate configuration. Last but not least, if we consider the force 
on the tip due to this interaction, 

t

d
Sdz

F qV= − , we observe a combination qs originates, 

reminding us of the fact that observing a trapped charge is in fact a measurement of a 
dipole. This character is stronger for small s. This explains also the difficulty of resolving 
charge magnitude and depth, as signaled in Chapter 5. 
The accuracy of this approximation is plotted in Fig. A17. 
 

 
Fig. A17 The scaled difference between the numerical infinite sum of the potential 
(denoted ΣVS) and the approximated potential VS  against relative s scaled to the spacing 
a = ztip – R., for 1) a small  p (p =2.3) and 2) a large p (p = 28).  
 
The approximation is better for small p and in fact very accurate over the whole range of 
s, as is demonstrated for p = 2.3 (for example a tip with R = 100 nm, ztip = 140 nm, so a 
spacing a of 15 nm). But even for a much larger p of 28 (e.g. R  = 10 nm, ztip = 140 nm, 
so a = 130 nm), the accuracy is not much worse. The ‘inaccurate’ part is only less 
favorably distributed; it improves only little for small s, close to the metal surface. 
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A2.2.3 Reflection potential 
 
It remains to treat the reflection potential 
of the charge, which is the potential that a 
charge induces at its own location as a 
result of surrounding grounded conductors 
(also dielectrics) reacting on the charge. 
Also in this case, earlier derived results 
can be consulted. The situation is a bit 
more complicated in the present case. Fig. 
A18 shows a schematic aimed at clarifying 
the reflection interaction.  
The first contribution to the reflection 
potential Vrefl in S is given by the mirror of 
the charge q’ in the metal surface. This 
term amounts to -q/8πε0s. Then, the tip 
(upper, big circle) sees the charge q and its 
mirror in the flat electrode q’. The tip itself 
is mirrored in the metal (lower big circle), 
which is imaged in the tip again, etc. 
Hence there are five regions that supply a 
contribution to the reflection potential. 
 

 

 
Fig. A18 reflection interaction; The large 
grey circles are ‘clouds’ of image charges 
in the tip. Thin lines represent important 
”imaging routes”, thick lines indicate the 
contributions to the reflected potential in 
S. The tip has been moved a little away 
from the charge  in order to better 
distinguish the relevant regions

 
The first order images in the tip due to the trapped charge q at S read: 
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etcetera.  
In the present case, /( )tR z sλ = − . The charges in the tip are generally given by: 
 
 

, ( )f n nQ q= −λ Π λ , (A86) 
with corresponding positions: 
 ( )n t nz z Rr= − λ . (A87) 
 
Then there is a series of images in the tip resulting from q’ = –q. For this we define      
λ’≡ R/(zt + s), to arrive at 
  

,' ' ' ( ') ' ( ')f n n nQ q q= −λ Π λ = λ Π λ , (A88) 
 ' ( ')n t nz z Rr= − λ . (A89) 
 
The tip contribution to the voltage in S is then retrieved by these tip charges Qf,n and Q’f,n 
and their corresponding positions zn and z’n. The final share of the reflection potential  
comes from the tip mirrored in the z = 0 plane. This results in charges –Qf,0 and –Q’f,0 at 
positions –zn and –z’n. The total reflection potential thus reads: 
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The height-dependence of the reflection potential in s of a single electron is shown in Fig. 
A19. The tip radius R is 100 nm. The center zt is at 140 nm, so that the spacing between 
tip and sample zt – R is 40 nm. The charge is then placed at 0-40 nm from the bottom. 
The end points of the graph have infinite values, because the charge comes very close to 
its most direct image then. Finally, the reflection potential is proportional to the amount 
of trapped charge q, hence the graph can be vertically scaled according to this amount. 
 

 
Fig. A19 (left) Reflection potential vs. position of charg,  including the mirrored charge. 
Fig. A20 (right) Quality of approximation of reflection potential. Here Vrefl is without 
mirror charge term 
 
The charge-charge force Frefl on the tip can be calculated by evaluating the z-derivative of 
the reflection energy  
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In the calculation of the force on the tip, the first term in the reflection potential, which 
stems from the mirrored charge, plays no role. It is independent of the tip coordinate zt. 
This term is only important if one is to calculate the force on the charge.   
In the contexts of the bias-bias interaction (“capacitance”) and the charge-bias 
interaction, expressions have been provided as approximations to the infinite sum. The 
simplest procedure is to take just the n = 0 - term of the reflection potential, cf. Eq. (A90). 
Omitting the contribution from the mirrored charge would then give: 
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This approximation is compared with the summed reflection potential Eq. (A90) without 
the mirrored charge. This term is omitted, in order to highlight only the terms relevant for 
the force. This calculation is shown in Fig. A20, in which the same parameters are used 
for Fig. A19. The approximation is always reasonably good. It is ‘worst’ close to the 
sample (metal interface) and it is perfect close to the tip, at s = 40 nm. For higher values 
of p = 2zt/R (small tip, large spacing), the approximation Eq. (A92) improves. For p = 10, 
the ‘worst end’ at s = 0 amounts to V0/Vrefl = 0.91.  
Finally we remark that the first energy term Urefl,0 = ½qV0 gives a factor (qs)2, which 
highlights that this contribution is essentially a dipole-dipole interaction. In this way it is 
seen that the mirror charge q’ is still important for the interaction, because it forms a 
dipole with the original trapped charge q. 
 
 
A2.3 DIELECTRIC EXTENSIONS 
 
A2.3.1 Dielectric layer 
 
Until now, the three interactions have been calculated for a charge floating above a 
metallic substrate. In practice, this charge is embedded in a dielectric layer. Not only does 
this modify the apparent strength of the trapped charge, but also there are infinitely many 
reflections introduced.  
For charges above the dielectric layer, these are the bias charge and all image charges in 
the tip, there are also infinitely many reflections because of the dielectric layer. Apart 
from that, these tip charges will have direct mirrors in the dielectric layer, just as if it 
were a metal surface, only with a weaker mirror.  
It has been attempted to provide approximate expressions for the three interactions VV, 
qV and qq in the case of no dielectric layer, or equivalently ε = 1. There is no convenient 
way to explicitly sum the interaction of the tip with the chain of infinite reflections 
caused by the dielectric layer. There is however a different handy approximation 
available, based on a coordinate transformation. This transformation entails: 
 
 z → z / ε 0 < z ≤ d 

(A93) 
 z → z – d +d / ε z ≥ d 
 
In fact it comes down to squeezing the dielectric layer with a factor ε and solving the 
vacuum problem afterwards. The transformation affects the geometrical parameters the 
oxide thickness d, the location of the charge s and the position of the centre of the tip zt 
accordingly: 
 
 d → d / ε, s → s / ε, zt → zt – d +d / ε (A94) 
 
The radius of the tip R and the spacing a = zt – R – d are invariant. The latter is a derived 
parameter, being the distance from the tip apex to the surface of the dielectric, which 
after the transformation has dielectric constant ε = 1. 
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In a true vacuum problem, one would prefer to associate the tip spacing towards the metal 
surface. In this interpretation, the derived spacing zt – R has changed, but indeed because 
of a reinterpretation. Finally, the important p parameter changes accordingly:  
 
 p = 2zt/R  →  p – d(1 – ε – 1)/R. (A95) 
 
For weak dielectrics, with a low dielectric constant, the change in force on the tip is 
limited, because the chain charges and the direct mirror are weak anyway. This motivates 
the simplification in these cases.  
For strong dielectrics with a high dielectric constant, the interaction forces do change. 
However, the additional force induced by the coordinate transformation is less height-
dependent for stronger dielectrics. The force gradient therefore remains relatively 
unaffected after the coordinate transformation: dF(z)/dz → d(F(z) + F0)/dz ~ dF(z)/dz 
(note: d is the differential symbol here), in which the additional force F0 depends only 
very weakly on z. The latter point is sought to illustrate in Fig. A21.  
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Fig. A21 Left: Electric potential and field of charge + sample; Right: Reflection (or 
response) potential and field of the sample alone. 
 
On the left, there is a negative unit charge in a dielectric with ε = 10 and d = 25 nm. This 
dielectric fills the lower half of the plot and is on top of a metallic substrate (z < 0). The 
top half of the plot is vacuum. The potential contours and electric field lines are drawn. 
They form the electrostatic “map” of the charge, with which a biased tip is going to 
interact. The field lines in the vacuum part (z > 25 nm) run apart. The total field is hence 
clearly dependent on the vertical coordinate. On the right, the contribution of the charge 
itself to the potential and field is subtracted. Shown here is the potential and the field 
lines from the dielectric layer and the metallic substrate, in response to the charge. It is 
seen that this contribution of the sample to the electrostatics does not have such a large 
spread in the vacuum part; the sample field is rather homogeneous. Although the force on 
the tip may change by the dielectric layer, the force gradient changes only very little. 
Hence in the calculation of force gradients, the coordinate transformation is permissible 
as a simplification of the calculations for accounting for the dielectric later. 
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As we have seen, there are various expressions conceivable to estimate the capacitance 
between a closely spaced tip and a sample with a dielectric layer. Before comparing 
them, it is helpful to define 
 

21 1
2 2

4r p p
ε ε ε
≡ ± −  

2( / )tz d d
p

Rε

− + ε
≡  (A96) 

 
as the coordinate-transformed versions of r and p respectively. The total capacitance 
(from Eq. (A73)) is then: 
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Its boundaries indicated by Eq. (A72) are: 
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Their average is: 
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Another version is to take the first term of the infinite sum Eq. (A97) and then add the 
minimal value of the remainding terms of the sum. The “between” result is 
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Every converging infinite sum can be approximated by an integral. For a monotonously 
decreasing function f(ν) we have in general that  
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The latter ‘<’ can become ‘=’ if the argument of the integrand is shifted by a special 
amount less than 1. There exist a γ such that the integral of f(ν – γ) equals the required 
sum. If we apply this to the capacitance sum, we retain a closed-from expression, but 
with an a priori unknown parameter γ: 
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For a suitable γ the integrated formula approximates the capacitance very well over a 
significant range of tip spacings a.  
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Fig. A22 Capacitance approximations, compared to a pure multi-mirror expression CMM, 
retaining numerous charge reflections.  The integral approximation Cint has been 
assigned γ = 0.44 and lies between CMM and Cε over the whole indicated range of tip 
spacing a. Tip radius R = 100 nm, thickness dielectric = 25 nm, ε = 9.1  
 
In Fig. A22 all capacitive expressions are compared for close tip spacings a. 
Most approximations do a reasonable to good job in approximating the true multimirror 
capacitance CMM. It is seen that the coordinate transformation Cε (round black dots) 
approximates CMM very well, provided the full (numerical) sum is taken. Compare for 
example Cmin, which represents only the first term. Although even in this case the 
capacitance value is not badly predicted by the latter, the force (spatial derivative of C) is. 
It can be seen from the graph that the slopes at a = 5 nm are quite dissimilar. This is 
illustrated even better in Table A1, in order of quality of approximation. 
 

∆CMM ∆Cε ∆Cint  (ν=0.44) ∆Cbet ∆Cav ∆Cmax ∆Cmin 
-0.629 -0.601 -0.599 -0.782 -0.905 -1.631 -0.179 

 
Table A1, Capacitance differences between a = 5 nm and a = 6 nm 

 
Thus the point stated underneath Eq. (A79) is understood. 
 
 
A2.3.3 Dielectric substrate 
 
The multimirror model has been developed for a dielectric layer on a metallic substrate. It 
can be readily extended however to encompass a dielectric substrate as well, provided 
that this substrate is conducting, i.e. its potential relative to the tip should be definable by 
connecting it to a voltage source. The immediate example is a silicon substrate, which has 
a dielectric constant of ε = 11.9. The so far encountered dielectric layers (SiO2, Al2O3) 
have lower dielectric constants, but it is entirely possible that the dielectric layer has a 
dielectric constant that is higher than that of the substrate.  
To accomplish this, the apparent strength of the virtual charges changes, their positions 
remain unaltered. 
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Firstly, the dielectric mirror Eq. (A9) is unaffected, because no mirroring in the substrate 
is involved. Furthermore, the expressions (A10) and (A13) can be conveniently combined 
in a single expression. The interpretation then comes down to counting the number of 
internal reflections between the layer surface and the substrate/layer – interface. The 
analogue of the combination of Eqs. (A10) and (A13) then becomes 
 
 Qn = (–ksk)n ks(1 – k2)QV (n ≥ 0). (bias charge) (A103a) 
 
And the analogues of the trapped charge q chains Eqs.(A15ab) and Eqs. (A17ab) become: 
 
 qn,1 = (–ksk)n(1 – k)q  (n ≥ 0), (trapped charge, series 1) (A103b) 
 
 qn,2 = –(–ksk)n ks(1 – k)q (n ≥ 0). (trapped charge, series 2) (A103c) 
Here  

s
s

s

k
ε − ε

≡
ε + ε

 

 
is the dielectric coupling between the substrate and the layer. In here, εs and ε are the 
dielectric constants of the substrate and the layer respectively. For a metallic substrate,  
εs → ∞, when ks → 1. The original charges Eqs. (A10), (A15), (A15ab) and (A17ab) are 
returned then. 
 
 
A2.4 CALCULATION METHODS 
 
The Multimirror model relies on large amounts of image charges, as explained on the 
basis of the Appendix equations through to Eq. (A18) and in Chapter 5. More mirror 
charges obviously yield a more precise answer for the force and force gradient on the tip. 
Of course the computer’s resources and the human operator’s patience are limited, so 
below there are a few pros and cons of methods to calculate the force from these charges. 
 

1) Direct point charge force 
 
The force on the tip is calculated by the interaction of every single image charge and bias 
charge with all charges outside the tip. There are infinitely many; the infinite series have 
to be truncated for a practical calculation. The gradient is then determined by calculating 
the force again, after a small vertical displacement of the tip.  
The advantage is that this direct force method converges relatively quickly, i.e. the cyclic 
process steps of imaging charge in the tip, mirroring it in the sample, image that mirror, 
etc. Also, the force between the charges that are taken into account is calculated exactly. 
The disadvantage is that the computing time scales with N2, with N the number of 
charges. For a not-too-complicated case, N is in the order of several thousand. 
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2) Maxwell stress tensor 

 
A convenient method to compute the force on a collection of charges, such as an AMF 
tip, uses Maxwell’s electrostatic stress tensor TM. In absence of magnetic fields, this 
tensor is given by 
 21

, 0 02M ij i j ijT E E E≡ ε − ε δ  (A104) 
 
Here i and j label the Cartesian coordinates x, y, z. The Kronecker delta δij is defined as  
δij = 1 if i = j and δij = 0 otherwise. Ei are the components of the total electric field and E 
is its norm. The force on a volume Ω can then be calculated by integrating the stress 
tensor over its boundary ∂Ω: 
 

MF T da
∂Ω

= ⋅∫ . (A105) 

 
This method involves the square of the electric field. The electric field depends only 
linearly on the number of charges. This is an obvious advantage. The computing time 
scales then as N × M, with M the number of integration elements over the tip surface. 
This partly undoes the gain in time, because for good precision M should not be taken too 
small. This is the price to pay, because the force between the charges 
This method is most advantageous when the tip is directly above the charge. The problem 
is then axially symmetric. The integration involves only the zenith angle θ. Discrete steps 
in this angle divide the surface of the spherical tip in ring-shaped integration surface 
elements of width Rdθ. It is found that between 50 and 200 of these rings are usually 
sufficient, while still quite good first approximations are retrieved by less. When the tip is 
not in the zenith of the trapped charge, there is only planar symmetry. Even then, the 
stress tensor calculation is often less time-consuming then the direct force method. 
Obviously, because the integration is done numerically45, the forces between the involved 
charges are not calculated exactly, unlike the direct force method. 
 

3) Energy 
 
In the foregoing text, it has been considered how the composition of the charges builds up 
electrostatic energy. Also here computation time scales only with N. There are no 
integration elements involved, so the energy is calculated exactly and very quickly. But 
also here there are effects that partially cancel the time gains. First, to derive the force 
and the force gradient, an extra gradient step has to be taken with respect to methods 1) 
and 2). This multiplies the calculation time by 1½, but more importantly, for each step 
the energy has to be calculated relatively accurately. This requires involving more 
charges than needed for the force methods. Furthermore, the energy converges 
considerably slower than the forces: the cycle of imaging in the tip and mirroring in the 
sample has to be repeated more often before a stable solution is reached. For extremely 
close spacings (roughly a < 0.1R), up to 108 charges or more might be needed. On an 
ordinary PC (2.4 GHz dual core), calculation times become limiting factors again, and 
even physical memory, because of the large arrays containing the charges. By chopping  
 

                                                 
45 A symbolic expression of the force integral does exist in principle, but its monstrous complexity 
puts this road drastically out of question.  
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up the arrays, the latter factor can be suitably addressed in the programming code, but the 
time factor is harder. Still, in general this energy method is clearly the fastest and 
accurate. 
 

4) Approximation models 
 
As briefly discussed in this Appendix, it is possible in many cases to approximate the 
energy in 3) by ready-made, closed-from expressions or simple numerical summations. 
Of course, the time consumption is negligible compared to the aforementioned methods.  
However, one has to check that the approximations are valid for a particular geometry or 
problem. One such case has already been mentioned: The capacitance can be 
conveniently determined by some expression, but in order to derive from it a reliable 
figure for the force on the tip and even more its gradient, the capacitance must be 
calculated quite accurately, typically down to a few per cent or better. 
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SUMMARY 
     
Brief overview 
 
In this thesis, the phenomenon of charge trapping in dielectric layers has been addressed 
via two approaches. First and foremost, the subject is treated on device level: the 
integrated, temperature dependent effects of charge trapping in capacitive MEMS-based 
sensors. Chapters devoted to the physics of MEMS and more specifically charge trapping 
are Chapters 2, 3, 4 and 6. Chapter 2 covers introductory theory of MEMS, specific 
topics relevant for the ‘empirical’ chapters 3 and 4 and finally discusses parasitic 
electrostatic forces. Chapter 3 presents temperature dependent capacitive-voltage 
measurements on available real devices (RF power sensors). Chapter 4 presents the 
design, fabrication and mechanical characterization of capacitive MEMS structures 
according to a novel fabrication concept, followed by capacitive-voltage measurements 
serving to extract the temperature dependent stability of the “built-in voltage”, signaling 
(moving) parasitic charges. 
Chapter 6 discusses when these trapped charges pose a limit to the performance of real 
devices: a gravity gradiometer and the RF power sensor of Chapter 3. 
The second approach is aimed at focusing on trapped charges at a differentiated, 
fundamental level: Studying localized trapped charges by conducting AFM. This is 
subsumed by Chapter 5 and the Appendices. Chapter 5 explains the principles of Force 
modulated, non-contact, conducting AFM and connects directly surface interactions to 
AFM read-out quantities. Experimental work by Marko Sturm is shortly presented. 
Further, it contains the results of a new model covering the electrostatic interaction 
between the conducting tip of an AFM and a metallic substrate with a dielectric layer 
containing a localized charge. This model is compared to an existing model from 
literature, showing strikingly different predictions. This new “multi mirror model” is 
supported on theoretical grounds, by finite element simulations and by empirical 
considerations.  
The appendices digress on the foundations of the multi mirror model and provide the 
theoretical justification. Approximation schemes are discussed that provide under many 
circumstances a viable shortcut to the sometimes involved proper multi mirror 
calculations. 
 
Summary with conclusions 
 
Chapter 2 starts with introductory theory of capacitive MEMS including statics, pull-in 
voltage and an account of how dielectric layers alter the basic expressions (section 2.1). 
Section 2.2 is dedicated to theory of a clamped-clamped beam deflected by an 
electrostatic load. Many accounts assume a uniform load, which however underestimates 
the force after attraction. The electrostatic force depends on the actual capacitive gap and 
is thus dependent on the deflection profile. This mutual influence is nonlinear and the 
very reason for an unstable point (pull-in), as is demonstrated. Important in this section is 
the influence of an axial load on the beam stiffness. Specifically, thermal stress is 
covered, which is important for analysis performed in section 3.3. Section 2.3 introduces 
the well-known concept of “built-in voltage”, which is defined as the shift of the 
minimum of a capacitance-voltage curve away from the vertical axis: a nonzero bias  
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voltage is needed in order to compensate for some remnant voltage and nullify the 
electrostatic force. This section provides an overview of possible causes: dissimilar work 
functions of the electrodes present in a device are in for a static contribution. Very 
important are however parasitic trapped charges, which influence the device’s 
characteristics in several ways. Static uniform charges introduce additional forces by 
interacting with their counterparts on the opposite electrode, their interaction with a bias 
voltage and by inducing image charges on the opposite electrode or dielectric and 
interacting with it. Furthermore, a static, non-uniform distribution also introduces forces, 
even if the net total charge is zero. Then, during operation of a MEMS device, charges 
move along the varying bias voltage. It is demonstrated that this can result in a built-in 
voltage. Finally, an overview of types of trapped charges is presented, as well as relevant 
transport mechanisms. Section 2.4 discusses the dynamics of a MEMS bridge under 
influence of an oscillating voltage through the use of equivalent circuits. This coverage is 
used for the mechanical characterization of newly designed and made devices in Chapter 
4.  Finally, section 2.5 touches a few situations that might influence proper capacitive 
MEMS behavior. Firstly, if the electrodes of a plate capacitor are non-parallel, 
characteristics derived from a capacitance-voltage curve can be misinterpreted. Secondly, 
the Casimir force is briefly mentioned. It is calculated that this contribution is negligible, 
although experiments are designed aimed at employing very sensitive capacitive MEMS-
based sensors in the very measurement of this force.  
Chapter 3 first shortly describes the deployed measurement set-up and the principle of 
capacitance-voltage measurements. In section 3.2 measurements performed on a type of a 
MEMS RF power sensor are presented. Its mechanical characteristics show clear 
dependence on the temperature. Meanwhile, the presence of thick dielectric layers (1 µm 
of silicon nitride) offers plenty of opportunity for parasitic charges to accumulate and 
disturb the device’s proper operation. The RF power sensor studied in section 3.3 shows 
even worse (though well repeatable) mechanical response toward thermal variations. 
Thermal stress is involved in this discussion. Analysis according to clamped-clamped 
beam theory (section 2.2) however considerably overpredicts this influence. An 
explanation to this might be that the suspension points are flexible, rather than absolutely 
immovable. The thin dielectric layer of this device (2.5 nm native Al2O3) still hosts 
detectable parasitic charges. The thermal instability of this sensor however prevents an 
account of the temperature dependence of the instability of these charges. To demonstrate 
these relatively small effects in a widely employed electrode like aluminum with native 
oxide, structures had to be designed with considerably enhanced thermal immunity. 
Chapter 4 reviews in section 4.1 in quite detail the design and the fabrication process of a 
thermally stable MEMS test structure. Special attention is devoted to the etching process, 
which is a novel approach in bulk micromachining. Though the KOH-etching process 
itself is everything but new, it has for the first time been employed to fabricate the beam 
springs that maintain parallelity of the capacitive electrodes upon actuation. The process 
is well-controlled. The first offspring of this process had been tested and proven proper 
capacitance behavior, cf. section 4.2 A discrepancy between capacitance and sensitivity 
could be explained upon closer inspection of the beam springs, which were effectively 
shortened because of the presence of still unremoved silicon pillars. Extraction of the 
spring constant, through resonant, bias dependent behavior, is the subject of section 4.3. 
Resonant behavior is only observable in concurrence with a bias voltage, which however 
decreases the effective stiffness. By measuring at various voltages, the intrinsic spring 
constant could still be distilled. It was found in good agreement with expectation. The 
translation between mechanical quantities (mass, spring constant, damping) and their  
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corresponding equivalent circuit elements (induction, capacitance and resistance 
respectively) however showed a uniform, persistent mismatch, which could not be 
resolved. Finally, this section mentions a single measurement series with varying 
pressure, with indications of squeezed film damping.  The structures researched so far 
had however not sufficient sensitivity for temperature-varied measurements concerning 
trapped charge stability. Section 4.4 deals with structures that did have sufficient 
sensitivity, while showing excellent thermal stability, herewith approving the concepts 
implanted in the design. Series of capacitance voltage curves at various, stabilized 
temperatures (pressure: 10-3 mbar) were taken in order to consider two aspects of built-in 
voltage. The instantaneous value depends first and foremost on the direction of the 
voltage sweep. Alternating sweeps thus show oscillating values for this. Below 150 to 
200 K, this ‘two-valuedness’ quite suddenly collapses to a single value. This has been 
observed repeatedly for both the RF power sensor discussed in section 3.3 and the 
structures considered in the current section, 4.4. The presence of aluminum electrodes is 
common to these structures, which are for the rest completely different. This is strongly 
indicative of an effect attributable of the electrode material, in particular trapped charges. 
Apart from this, there is the long-term behavior of the built-in voltage. Also the gradual 
change in this clearly diminishes at lower temperature. Section 4.5 finally contains 
measurements performed at high vacuum (5·10-7 mbar) and room temperature. Especially 
built-in splitting does not disappear. Ambient conditions can therefore not be fully 
accounted for the observed “built-in splitting”. 
Chapter 5 enters the path of AFM-based research of trapped charges. In section 5.1 
principles of AFM are described, gradually but quickly concentrating on Force 
Modulated non-contact conducting AFM. How tip-surface interactions are translated in 
an observable quantity (resonance frequency shift of the AFM cantilever) is given. FM 
conducting AFM has been used for experimental work performed by Marko Sturm 
(reference chapter 5) on imaging local oxide charges (section 5.2). The remainder of this 
chapter contains calculations and simulations concerning the electrostatic interaction 
between the tip of a conducting AFM and a metal electrode with dielectric layer and a 
localized trapped charge. The particular electrostatic problem is introduced in section 5.3, 
together with how it is approached by a literature model (Ludeke - Cartier and Lambert - 
Saint-Jean). Section 5.4 shows some results and predictions of the newly presented Multi 
Mirror model (for its foundations, the reader is referred to the Appendix). These include 
conditions for electrostatic tip-sample repulsion (where normally the force is attractive) 
and critical behavior at short distances. Special focus is on the resolvability of the 
magnitude and depth of trapped charge: because of the proximity of Hence the tip-charge 
interaction essentially assumes a dipole character. Because of its form p = qs, (infinitely) 
many combinations of charge q and distance s would build the same dipole p. Performing 
AFM measurements at various bias voltages is not expected to reveal any resolution. 
Measurements at varying tip height helps in some cases. A horizontal scan over the 
charge does not provide any solution if the radius of the tip is much larger than the 
relevant dimensions (thickness of the dielectric, position of the charge relative to the back 
electrode). However, very sharp tips (< 10 nm) at very close spacings (< 5 nm) should 
perform well. Section 5.5 covers finite element modeling and confirms the applicability 
of approximating the tip by a conducting sphere. The three approaches (Lambert & Saint-
Jean, FEM and Multi Mirror) are compared in section 5.6 for a thin (2.5 nm) and a 
medium (25 nm) dielectric of ε = 9.1 (aluminum oxide) and a medium dielectric of ε = 
3.9 (silicon dioxide). The models are compared for the quantities force, force gradient, 
peak height and Vmin, with which the complete relevant electrostatic phenomenology is  
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covered. For force, force gradient and peak height, Multi Mirror predicts drastically 
higher values than Lambert & Saint Jean (sometimes more than an order of magnitude). 
In doing so, it feels supported by FEM. An additional important feature of the Multi 
Mirror model is that it predicts that Peak height and Vmin, quantities characterizing the 
interaction with the trapped charge sec, subside to zero when the charge is sunk to the 
interface of the metal and the dielectric, where it recombines with its mirror charge and 
should escape detection. On the contrary, according to Lambert & Saint-Jean, a 
considerable interaction remains alive in this case. Finally, in section 5.7 it is shown that 
Multi Mirror performs excellent in predicting the shift of resonance frequency of an AFM 
cantilever. The literature model could not be matched with the observed frequency shift 
in a comfortable way. 
At last, it is reasoned that the multi mirror model is consistent with profile measurements 
on charges, if it is assumed that trapped charges (charge clusters) consist of more than 
one unit charge (~50).  
Chapter 6 discusses when charge trapping impairs the operation of real capacitive MEMS 
devices. The larger part of this chapter is devoted to a MEMS gravity gradiometer, which 
is in its design stage. It is shown that its targeted sensitivity of 0.1 Eötvös/√Hz cannot be 
reached if charge trapping is not given due attention. This is calculated for the static case, 
while also a start is made with a dynamic approach. A shorter discussion has been set up 
for the RF power sensor, which has been object of experimental study already in section 
3.3. The same conclusion applies. This sensor has natural thin dielectric layers, which 
nevertheless provide opportunity for charge trapping to the extent that its target 
sensitivity of 1 nW/√Hz remains (far) out of reach. 
Appendix I finally provide the fundamental building blocks and a theoretical footing of 
the Multimirror model. The finiteness of the model is demonstrated.  
In Appendix II the quadratic form of the electrostatic force is derived. Additional 
miscellaneous results are derived, that help to accelerate the sometimes time-consuming 
calculations of the normal application of the multi-mirror model, by seeking suitable 
approximations. These results include:  
A) A discussion of the capacitance between a spherical conducting tip at a certain 
potential relative to a conducting infinite plane. This capacitance can be calculated via an 
infinite series of mirror charges. Though an expression for the total capacitance, 
involving an infinite sum, is known from literature, three different expressions are 
derived here: 1) It is achieved to cast the nth mirror charge in a closed-form expression, 
without needing to first calculate all preceding n – 1 charges. 2). The sum over these 
charges can be rewritten in a form that converges faster. 3) It was recognized that these 
charges could be written in polynomials of finite degree in terms of the ratio of the tip 
radius R and the tip position zt. The coefficients of these polynomials are given by certain 
diagonals in Pascal’s triangle.  
B) Suitable approximations are found for the qV and qq – interactions in absence of a 
dielectric layer. The dielectric layer can often approximately be taken into account by a 
coordinate transformation.  
 
The multimirror model has been worked out for a metallic substrate. It is shown to be 
easily generalizable to the case of a dielectric substrate, i.e. with a finite relative dielectric 
constant. At last, a brief discussion on the pros and cons of methods that calculate the 
multimirror model finishes this appendix. 
 



 

SAMENVATTING   (IN DUTCH) 
 
 
Kort overzicht 
 
In dit proefschrift wordt het fenomeen van parasitaire lading in diëlectrische lagen 
bestudeerd volgens twee benaderingen. Eerst en vooral wordt dit bestudeerd op het 
niveau van een complete sensor: de geïntegreerde, temperatuursafhankelijke effecten van 
parasitaire lading in capacitieve MEMS sensoren. Hoofdstukken gewijd aan de fysica van 
MEMS en meer specifiek parasitaire lading zijn 2, 3, 4 en 6. 
Hoofdstuk 2 beslaat basistheory van MEMS, specifieke onderwerpen relevant voor de 
‘experimentele’ hoofdstukken 3 en 4 en behandelt tenslotte parasitaire electrostatische 
krachten. Hoofdstuk 3 behandelt temperatuursafhankelijke metingen aan beschikbare, 
werkelijke sensoren (RF-vermogen sensoren). In hoofdstuk 4 worden ontwerp, fabricage 
en mechanische karakterisatie van capacitieve MEMS structuren gepresenteerd, 
gebaseerd op een nieuw fabricageconcept. Dit wordt gevolgd door metingen van de 
capaciteit tegen aangelegde spanning, ten dienste van het extraheren van de 
temperatuurafhankelijke stabiliteit van de “built-in spanning”, welke een (mobiele) 
parasitaire ladingen. Hoofdstuk 6 beschouwt wanneer deze parasitaire ladingen een limiet 
betekenen voor de prestaties van werkelijke sensoren: een gravitatiegradiometer en de 
RF-vermogen sensor van Hoofdstuk 3. 
De tweede benadering is gericht op het bestuderen van parasitaire ladingen op een locaal, 
fundamenteel niveau, door middel van geleidende AFM. Dit is opgenomen in Hoofdstuk 
5 en de Appendices. In Hoofdstuk 5 worden de principes van Force modulated, non-
contact, geleidende AFM uitgelegd en worden direct oppervlak-interacties gerelateerd 
aan AFM uitleesgrootheden. Experimenteel werk door Marko Sturm wordt kort 
besproken. Verder bevat het de resultaten van een nieuw model dat de electrostatische 
interactie beschrijft tussen een geleidende AFM-tip en een metallisch substraat met een 
dielectrische laag waarin zich een locale lading bevindt. Dit model wordt vergeleken met 
een ouder model bekend uit de literatuur. De voorspellingen zijn zeer verschillend. Het 
nieuwe “multi mirror model” wordt ondersteund door theoretische argumenten, finite 
element simulaties en empirische overwegingen. De appendices wijden uit over de 
fundamenten van het multi mirror model en verschaffen de theoretische rechtvaardiging. 
Er worden benaderingsschema’s voorgesteld die voor veel situaties de soms tijdrovende 
berekeningen van het multi mirror model kunnen versnellen. 
 
Samenvatting en conclusies 
 
Hoofdstuk 2 begint met het introduceren van capacitieve MEMS, incusief statica, pull-in 
spanning en hoe dielectrische lagen de basisgrootheden beïnvloeden (sectie 2.1).  
Sectie 2.2 is gewijd aan de theorie van een tweezijdig vastgeklemde balk die buigt onder 
een electrostatische last. Vaak wordt een uniforme lastverdeling aangenomen, hetgeen 
echter de kracht onderschat na buiging. De electrostatische kracht hangt af van de 
momentane capacitieve verwijdering en is dus afhamkelijk van het buigingsprofiel. Deze 
wederzijdse invloed is niet-lineair en precies de oorzaak van een instabiliteit (pull-in), 
zoals wordt gedemonstreerd. Belangrijk in deze sectie is de invloed van een axiale 
trekspanning op de stijfheid van de balk. Specifiek wordt ingegaan op thermische 
spanning, hetgeen van belang is voor een analyse die in Sectie 3.3. gemaakt wordt.  
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Sectie 2.3 introduceert het bekende concept “built-in spanning”, welke is gedefinieerd is 
als de verschuiving langs de spannings-as van het minimum van een capaciteit-tegen-
spanning grafiek: een biasspanning ongelijk aan nul moet worden aangelegd om te 
compenseren voor een remanente spanning en aldus de electrostatische kracht per saldo 
te nullificeren. Deze sectie geeft een overzicht van de mogelijke oorzaken: ongelijke 
uittreepotentialen van de electrodes in een sensor dragen bij aan een statische component. 
Zeer belangrijk zijn echter parasitaire ingevangen ladingen, welke de karakteristieken van 
de sensor op verschillende manieren beïnvloeden. Statische uniforme ladingen 
introduceren additionele krachten door te interageren met hun tegenhangers op de 
tegenovergeplaatste electrode, door hun interactie met een biasspanning en door 
interactie met geïnduceerde spiegellading op de andere electrode of de dielectrische laag. 
Verder veroorzaakt een statische, niet-uniforme lading ook krachten, zelfs wanneer de 
netto lading nul is. Bovendien bewegen tijdens de werking van een MEMS ladingen mee 
met een variërende biasspanning. Het wordt gedemonstreerd dat dit kan resulteren in een 
built-in spanning. Tenslotte wordt een overzicht gegeven van de typen van parasitaire 
lading en relevante transportmechanismen.  
In sectie 2.4 wordt de dynamica besproken van een MEMS-brug onder invloed van een 
oscillerende spanning via equivalente circuits. Dit is relevant voor de mechanische 
karakterisatie van nieuw ontworpen en vervaardigde MEMS in Hoofdstuk 4.  
Tenslotte stipt Sectie 2.5 enkele situaties en effecten aan die afwijken van het standaard 
gedrag van een MEMS. Ten eerste, als de electrodes van een plaatcondensator MEMS 
niet parallel zijn, kunnen de karakteristieken afgeleid van een capaciteit-tegen-spanning 
grafiek onjuist worden geïnterpreteerd. Ten tweede, de Casimirkracht wordt kort 
genoemd. Er wordt berekend dat deze bijdrage verwaarloosbaar is, hoewel er 
experimenten worden ontworpen die juist capacitieve MEMS sensors gebruiken om deze 
kracht te meten. 
 
Hoofdstuk 3 beschrijft eerst kort de meetopstelling en het principe van capaciteit-tegen-
spanning metingen. 
In Sectie 3.2 worden metingen gepresenteerd uitgevoerd aan een type RF MEMS sensor. 
De mechanische karakteristieken blijken duidelijk afhankelijk van de temperatuur. De 
aanwezigheid van dikke dielectrische lagen (1 µm silicium nitride) biedt ruim 
gelegenheid voor accumulatie van parasitaire lading die de werking van het MEMS 
verstoort.  
De RF-vermogen sensor bestudeerd in Sectie 3.3 heeft zelfs een ongunstigere (hoewel 
reproduceerbare) mechanische respons op temperatuurfluctuaties. Thermische stress 
wordt in deze analyse betrokken. Analyse volgens de theorie van een tweezijdig 
vastgeklemde balk (Sectie 2.2) overschat deze invloed echter. Een verklaring hiervoor 
zou kunnen zijn dat de ophangpunten flexibel zijn in plaats van absoluut onbeweeglijk. 
Betreffende parasitaire lading: zelfs in de dunne dielectrische laag van dit MEMS (2.5 nm 
natuurlijk Al2O3) is die meetbaar aanwezig. De thermische instabiliteit van deze sensor 
verhindert echter het temperatuurafhankelijke gedrag van deze ladingen vast te stellen. 
Om deze relatief kleine effecten te demonstreren in een veelgebruikte electrode zals 
aluminium met natuurlijk oxide, moesten MEMS structuren worden ontworpen met 
aanzienlijk verbeterde thermische stabiliteit. 
 
Hoofdstuk 4 beschouwt in sectie 4.1 in detail het ontwerp en het fabricageproces van een 
thermisch stabiele MEMS teststructuur. Speciale aandacht heeft het etsproces, welke een 
nieuwe benadering is in “bulk micromachining”. Hoewel het KOH-etsproces zelf beslist  
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niet nieuw ism is het voor het eerst gebruikt om bladveren te fabriceren die 
evenwijdigheid van de capacitieve electrodes behouden wanneer een electrostatische 
kracht aanwezig is. Het proces is goed gecontroleerd.  
De eerste structuren uit dit proces zijn getest en het capaciteitt-tegen-spanning gedrag is 
correct bevonden, zie Sectie 4.2. Een discrepantie tissen capaciteit en gevoeligheid kon 
worden verklaard na nauwkeuriger inspectie van de bladveren, die effectief korter waren 
vanwege de aanwezigheid van onbedoelde dwarsverbindingen tussen de veren. 
Onderwerp van sectie 4.3 is het bepalen van de veerconstante via meting van resonant, 
biasspanning-afhankelijk gedrag. Resonant gedrag is alleen zichtbaar wanneer een 
biasspanning wordt aangelegd. Dit vermindert echter de effectieve stijfheid. Door bij 
verschillende spanningen te meten kan de intrinsieke veerconstante niettemin worden 
gedestilleerd. Het bleek in overeenstemming met wat verwacht werd. De vertaalslag 
tussen mechanische grootheden (massa, veerconstante, demping) en hun 
corresponderende elementen van een equivalent circuit (respectievelijk inductie, 
capaciteit en weerstand) lieten echter een uniforme en consequente discrepantie zien, 
welke niet opgelost kon worden. Tenslotte wordt in deze sectie een enkele meting 
genoemd waarbij de omgevingsdruk werd gevarieerd, die het optreden van squeezed film 
damping doet vermoeden. Echter, de structuren waren nog onvoldoende gevoelig om de 
temperatuurafhankelijkheid van parasitaire ladingseffecten te meten.  
Sectie 4.4 beschrijft structuren die voldoende gevoelig zijn en waarvan de thermische 
stabiliteit aangetoond is. Hiermee is een essentieel doeleinde gehaald. Bij verscheidende, 
gestabiliseerde temperaturen (druk: 10-3 mbar) zijn series van C(V)-curven gemeten 
teneinde twee aspecten van built-in spanning te demonstreren. De instantane waarde 
hangt ten eerste af van de richting van de spannings-sweep. Afwisselende sweep-
richtingen laten oscillerende waarden zien voor de built-in spanning. Beneden 150 à 200 
K valt deze “tweewaardigheid” plotseling terug naar een enkele waarde. Dit is 
herhaaldelijk gezien voor zowel de RF-vermogen sensor van sectie 3.3 als de structuren 
in deze sectie, 4.4. Deze structuren hebben gemeen dat aluminium het  electrodemateriaal 
is; voor de rest zijn ze totaal verschillend. Dit is een sterke aanwijzing voor dat het 
electrodemateriaal debet is aan dit effect, in het bijzonder het invangen van ladingen. 
Verder is er het lange-termijngedrag van de built-in spanning. Ook de geleidelijke 
verandering hierin wordt duidelijk langzamer bij lagere temperatuur.  
In sectie 4.5 tenslotte zijn metingen opgenomen uitgevoerd bij hoog vacuüm (5·10-7 
mbar) en kamertemperatuur. Met name built-in splitsing verdwijnt niet. Dit effect kan dus 
niet volledig aan de omgeving worden toegeschreven. 
 
Chapter 5 enters the path of AFM-based research of trapped charges. In section 5.1 
principles of AFM are described, gradually but quickly concentrating on Force 
Modulated non-contact conducting AFM. How tip-surface interactions are translated in 
an observable quantity (resonance frequency shift of the AFM cantilever) is given. FM 
conducting AFM has been used for experimental work performed by Marko Sturm 
(reference chapter 5) on imaging local oxide charges (section 5.2).  
Hoofdstuk 5 beschrijft onderzoek aan (locale) parasitaire lading gebaseerd op AFM. In 
sectie 5.1 worden de principes van AFM beschreven. Dit wordt geleidelijk maar vlot 
afgebakend richting Force modulated non-contact geleidende AFM. Er wordt aangegeven 
hoe tip-oppervlak interacties worden vertaald in een observabele grootheid (verschuiving 
van de resonantiefrequentie van de AFM cantilever). FM geleidende AFM is aangewend 
voor experimenteel werk uitgevoerd door Marko Sturm (zie Hoofdstuk 5 voor 
referenties) aan het afbeelden van locale oxideladingen. 
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De rest van dit hoofdstuk bevat berekeningen en simulaties betreffende de 
electrostatische interactie tussen de tip van een geleidende AFM en een metaalelectrode 
met een dielectrische laag en een locale ingevangen lading. Het electrostatische probleem 
wordt geïntroduceerd in sectie 5.3, alsmede hoe het is benaderd door een model uit de 
literatuur (Ludeke-Cartier en Lambert-Saint-Jean).  
Sectie 5.4 laat enkele resultaten en voorspellingen zien van het hier voorgestelde multi 
mirror model (voor de opbouw van dit model zij de lezer verwezen naar de Appendices). 
Hieronder vallen de voorwaarden voor electrostatische afstoting van de tip door het 
sample (waar de kracht normaal gesproken aantrekkend is) en kritisch gedrag op korte 
afstanden. Speciale aandacht wordt besteed aan de oplosbaarheid van de grootte en de 
diepte van de ingevangen lading: vanwege de nabijheid van een metallisch (derhalve 
equipotentiaal) oppervlak, gevormd door de substraatelectrode, wordt een spiegellading 
gevormd. In feite heeft de interactie tussen tip en lading een dipool-karakter. Vanwege 
haar vorm p = qs, kunnen (oneindig) veel combinaties van lading q en afstand s dezelde 
dipool p opbouwen. Deze kunnen uit AFM-metingen bij verschillende biasspanningen 
naar verwachting niet opgelost worden.  Metingen bij variërende tiphoogte kan in enkele 
gevallen uitkomst bieden.  Een horizontale scan over de lading geeft geen verbetering als 
de tip veel groter is dan de relevante afmetingen (dikte van het dielectricum, positie van 
de lading ten opzichte van de substraatelectrode). Echter, zeer scherpe tips (<10 nm) op 
korte afstand (< 5 nm) moeten grootte en diepte van de lading kunnen oplossen. 
Sectie 5.5 beschouwt finite element modeling en bevestigt de toepasbaarheid van het 
benaderen van de tip door een geleidende bol.  
De drie benaderingen (Lambert & Saint-Jean, FEM en multi mirror) worden vergeleken 
in sectie 5.6 voor een dun (2.5 nm) en een modaal (25 nm) diëlectricum met ε = 9.1 
(aluminium oxide) en een dielectricum  met ε = 3.9 (silicon dioxide). De modellen 
worden vergeleken voor de grootheden kracht, kracht gradient, piek hoogte en Vmin, 
waarmee de complete relevante electrostatische fenomenologie is afgedekt. Voor kracht, 
kracht gradient en piekhoogte voorspelt multi mirror drastisch hogere waarden dan 
Lambert & Saint-Jean (soms meer dan een orde van grootte). Multi mirror wordt hierin 
ondersteund door finite element. Een ander belangrijk aspect van multi mirror is dat het 
voorspelt dat piekhoogte en Vmin, grootheden die de interactie met de ingevangen lading 
sec karakteriseren, naar nul afzwakken wanneer de lading wordt afgezonken naar het 
interface tussen het metaal en het diëlectricum, alwaar zij samenvalt met haar 
spiegellading en dus detectie zou moeten ontduiken. Echter, volgens Lambert & Saint-
Jean wordt de interactie maar weinig zwakker.  
Tenslotte wordt in sectie 5.7 gedemonstreerd dat multi mirror uitstekend presteert bij het 
voorspellen van de verschuiving van resonantiefrequentie van een AFM cantilever. Het 
literatuurmodel kan geen rekenschap geven hiervan. Tenslotte wordt beredeneerd dat het 
multi mirror model consistent is met profielmetingen van ladingen, als wordt 
aangenomen dat ingevangen ladingen voorkomen in clusters van meer dan één 
eenheidslading (~50). 
 
Hoofdstuk 6 beschrijft wanneer ladingsvangst de werking van realistische MEMS 
schaadt. Het grotere deel van dit hoofdstuk is gewijd aan een MEMS 
gravitatiegradiometer, welke in zijn ontwerpfase verkeert. Het blijkt dat de beoogde 
gevoeligheid van 0.1 Eötvös/√Hz niet gehaald kan worden als aan het fenomeen van 
ladingsvangst geen aandacht wordt geschonken. Dit wordt berekend voor het statische 
geval, terwijl ook een begin wordt gemaakt met een dynamische benadering. De 
resterende deel behandelt het statische geval voor de RF-vermogen sensor, welke in  
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sectie 3.3 onderwerp is van experimenteel onderzoek. Dezelfde conclusie als voor de 
gravitatie gradiometer geldt hier ook. Deze sensor heeft natuurlijke, dunne diëlectrische 
lagen, waarin niettemin zodanig ladingsvangst kan optreden dat de streefgevoeligheod 
van 1 nW/√Hz (ver) buiten bereik blijft. 
 
Appendix I verschaft uiteindelijk de fundamentele bouwstenen van het multimirror model 
en een theoretische rechtvaardiging ervoor. De eindigheid van het model wordt 
aangetoond.  
In Appendix II wordt de kwadratische vorm van de electrostatische kracht afgeleid. Extra 
resultaten worden afgeleid, die de soms tijdrovende berekeningen van de normale 
toepassing van het multi mirror model kunnen helpen versnellen, door geschikte 
benaderingen na te streven. Deze resultaten zijn onder andere: 
A) Een uiteenzetting betreffende de capaciteit tussen een bolvorminge geleidende tip op 
een bepaalde potentiaal ten opzichte van een geleidend oneindig vlak. Deze capaciteit 
kan worden uitgerekend via een oneindige serie spiegelladingen. Hoewel een uitdrukking 
voor de totale capaciteit, gebaseerd op een oneindige som, bekend is uit de literatuur, 
worden hier drie verschillende uitdrukkingen afgeleid: 1) een gesloten uitdrukking voor 
de nde spiegellading kan worden opgeschreven. 2) De som over deze spiegelladingen kan 
worden omgeschreven in een vorm die sneller convergeert. 3) Deze ladingen kunnen 
worden geschreven in polynomen van eindige graad in termen van de ratio van de 
tipstraal R en de tip positie zt. De coefficiënten van deze polynomen worden gegeven 
door bepaalde diagonalen in de driehoek van Pascal. 
B) Geschikte benaderingen zijn gevoinden voor de qV- en qq- interacties zonder 
diëlectrische laag. De diëlectrische laag kan vaak bij benadering in rekening worden 
gebracht door een coördinatentransformatie. 
 
Het multi mirror model is uitgewerkt voor een metallisch substraat. Het kan gemakkelijk 
worden uitgebreid voor het geval van een dielectrisch substraat, i.e. met een eindige 
relatieve diëlectrische constante. Tenslotte wordt de Appendix besloten met een korte 
discussie over de voors en tegens van enkele methoden om het multi mirror model door 
te rekenen. 
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DANKWOORD 
 
Het vervult mij met voldoening dat u deze woorden leest. De verheugende aanleiding is 
de totstandkoming van het proefschrift dat u nu voor u heeft, waarmee een jarenlange 
periode van onderzoek wordt afgesloten. Velen hebben direct of indirect bijgedragen 
hieraan. Met dit dankwoord wil ik in de eerste plaats graag een aantal hiervan noemen. 
Maar tegelijkertijd noodt het schrijven hiervan tot terugblikken op deze periode. De lezer 
vergeve mij dat ik mij niet uitsluitend beperk tot een obligate opsomming van namen. 
 
Mijn dank is in de eerste plaats gericht aan mijn promotor Horst Rogalla, die mij de kans 
gaf dit promotie-onderzoek te doen en er vervolgens ter verslaglegging enige zinnen aan 
te wijden. Op beslissende momenten stond hij mij bij om de eindstreep te halen. Zonder 
hem had ik bovendien een mooie tijd in zijn vakgroep Lage Temperaturen moeten 
missen. 
Direct in zijn kielzog gaat mijn dank uit naar Jaap Flokstra, aan wie de dagelijkse 
begeleiding was toevertrouwd. Hij slaagde erin om op regelmatige basis zijn promovendi 
op gesprek te ontvangen in bovendien soms herculische sessies. Nauwgezetheid is zijn 
handelsmerk. Met het binnen zijn “sensors”-groepje notoire werkwoord “japen” pleegt 
men het onderwerpen van een tekst aan zijn niets ontziende adelaarsogen en rode pen aan 
te duiden. Het heeft dit proefschrift geen kwaad gedaan. 
 
De Stichting FOM ben ik erkentelijkheid verschuldigd voor de “uitbesteding” van het 
onderzoek aan de UT en voor mijn plaasting aldaar, en voor alle overige steun die ik van 
haar heb gekregen om mijn werk in Enschede te doen en mijn promotie tot een goed 
einde te brengen. 
Erkentelijkheid is ook op zijn plaats jegens Philips, die het project in eerste instantie 
financieel mede mogelijk heeft gemaakt. Theo Rijks en Joost van Beek dank ik ook voor 
hun wetenschappelijke input.  
 
Voor de inhoud van dit proefschrift heb ik veel gehad aan de samenwerking met de 
leerstoel Transducers, Science and Technology (TST) van de faculteit Electrotechniek, 
Wiskunde en Informatica (EWI). Dit betreft in het bijzonder Remco Wiegerink. De 
ideeën die ten grondslag liggen aan de thermisch stabiele MEMS beschreven in 
Hoofdstuk 4 van dit proefschrift, waaronder de gebulkmicromachineerde dubbele veren, 
werden voor een belangrijk deel door hem voorgesteld tijdens de tête-à-têtes op Jaaps 
kamer. Zijn rustige, weloverwogen en kristalheldere uitleg en zijn snelle denken heb ik 
als stimulerend en bijzonder aangenaam ervaren. Een andere gewaardeerde suggestie van 
hem is Karmeliet. 
 
Samenwerking was er verder met de leerstoel Vaste Stof Fysica. Aanvankelijk Marko 
Sturm en later vooral Herbert Wormeester hadden het wellicht twijfelachtige genoegen 
samen met mij bijna een jaar lang met de conducting AFM van het clustersysteem te 
stoeien. Olie dweilen en gevallen samples uit de vacuumkamers hengelen is niemands 
hobby. Des te meer bedank ik hen voor de geïnvesteerde tijd. Verder heeft Herbert 
kritisch meegedacht over het multi mirror model. 
 
Ik denk met warme gevoelens terug aan Lage Temperaturen, de leerstoel waar ik vijf jaar 
lang deel van heb mogen uitmaken.  
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De secretaresses Ans en Inke zijn in velerlei opzicht de spin in het web van deze 
omvangrijke groep. Ik zoek nog een elegantere beeldspraak dan “smeerolie”. Aan hen is 
het bovendien te danken dat in dit mannenbolwerk planten en kerstversiering het 
werkklimaat veraangenamen. 
Anders dan Frank Roesthuis’ achternaam zou kunnen doen vermoeden, prefereert hij in 
het lab elegante en kwalitatief hoogwaardige oplossingen boven “quick & dirty” gefröbel. 
Ook in de koffiekamer mengt hij zich graag onder ons mekkerende promovendi en houdt 
zijn humor en humeur (vooral vrolijk) niet verborgen. Eveneens aan Dick Veldhuis mijn 
dank, die ondanks een geleidelijke verschuiving van feitelijke werkplek van lab naar 
bureau mij niettemin van technische assistentie heeft voorzien.  
“LT” heeft zijn naam feitelijk te danken aan Harry “Helium” Steffens, de onverwoestbare 
“kou-boy”. Gewapend met een heliumpistool in zijn holster is hij de schrik van ieder 
gaslekje. Ook Jan Talman zij genoemd. 
 
Ik heb mij altijd meer dan thuis gevoeld in Jaaps sensors-groepje, hierboven al genoemd. 
Mede hierdoor bood de zondagavond soms zelfs nog plezierigere perspectieven dan de 
vrijdagavond ☺.  
Aanvankelijk was daar Martin Podt. Met fotolithografie, de Nordiko en 4-op-een-rij heb 
ik dankzij mijn naamgenoot kennis gemaakt. Zijn kalme persoonlijkheid doet geen 
voorliefde vermoeden voor ontembare afstandsbestuurbare auto’s. 
Concerning Javier (“Ja4”) Sesé, I envy his completely de-stressed composure, never in a 
hurry, and nevertheless (consequently?) getting a whole lot of work done in a short time. 
Also his clear thinking and explanation are exemplary. He introducing me to MEMS and 
the flow cryostat served a solid starting point for my PhD work. Formally I should also 
say “Gracias” for showing me the “máquina de microcontactos”. It is a reliable tool for 
training anger management. 
Luis Fernández was “shared” between LT and TST. There are of course the fruitful 
scientific discussions and the (too) sensitive RF MEMS devices that he generously 
supplied me with. There is the teamwork in the MESA+ cleanroom; Luis, me and the 
robot mask aligner were an unbeatable trio. Pero mis recuerdos los muchos bonitos son 
de Tarazona. Era inolvidable. 
Johan Reitsema, je hebt na je afstuderen een meer spirituele kant gekozen, veel geluk op 
dit pad! 
Voor vier jaar hebben Johannes Pleikies en ik aangrenzende bureaus gehad en men kan 
zich niet beter wensen. Met bewondering heb ik zijn gietijzeren onverstoorbaarheid 
gadegeslagen. Onder de meest luidruchtige omstandigheden (verstrooiende praat, LA 
woman, Jantje Smit) bleef hij onbewogen de parameters van zijn SQUID-simulaties 
afstellen. Voor wèl relevante discussies, over wetenschap en politiek, was hij volop 
beschikbaar. Als Kollege wirst Du mir fehlen. Sehr vielen Erfolg mit dem letzten 
Stadium deines Promotions!  
Reinder Cuperus, de onverzettelijke Fries. Op basis van zijn IT-kwaliteiten was het 
opzetten van de “sensor-server” hem wel toevertrouwd. Ik denk dat we aardig aan elkaar 
gewaagd waren wat betreft het maken van (taal)grappen van een soms deplorabele 
flauwheid. Reinder, aan jou de schone taak de eer van MEMS hoog te houden binnen LT! 
Veel succes met de gravitatie gradiometer! 
Kris is er het voorbeeld van dat binnen canonieke werktijden (08.00u. 1e depositie, 
16.59u. uitklokken) ook een promotie-onderzoek gedaan kan worden. Vanwege zijn 
lengte (en trouwe presentie) was hij altijd hèt herkenningspunt wanneer LT zich  
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verzamelde op de Oude Markt om de kroegen te bestormen. Succes met de 
magnetometers en het dresseren van vortices! 
Kees (“Qäß”) Verwijs was voor mij onmisbaar tijdens de dagelijkse lunch in de mensa. 
Onbevangen en gretig stortte hij zich in welke discussie dan ook, zonder gêne voor een 
ongebruikelijke mening of een niet-sociaal afgestemde smaak. Bulkend van de 
posterprijzen smeedt hij nu zijn proefschrift tot een grafisch meesterwerk. Succes!!  
 Zoals al eerder aangegeven kon met LT-collega’s ook buiten het werk om gecongregeerd 
worden, een niet te onderschatten factor in een promotietijd. Buiten de reeds genoemde 
personen waren de kleurrijke Aico (de koffietafel heeft je nodig!), Pieter, Maarten, Jeroen 
“Nymus”, Mark, Aleksandar, Alexander B, Joska, Hen3, Harald, Vedran, Menno, Tim (al 
IM??), ...  dan in enigerlei samenstelling hierbij present.  
 
I am very happy that I have been given the chance to guide and work with many students 
from abroad. I appreciate warmly their contribution to my PhD work and especially the 
good company with them.  
A Cédric Pronchéry, mon premier étudiant de Grenoble, merci de m'avoir aidé pour les 
expériences avec le "flow cryostat".  
Antoine Becherel et Xavier Fix, vous avez très vite compris comment allier la vie 
estudiantine sur le campus et une présence matinale à labo, tout en y étant un binôme très 
efficace. Xavier, il est maintenant inutile de t’expliquer que l’alcool est dangereux au 
guidon et que pédaler après avoir (a)bu(sé) de la bière est dangereux pour le visage. 
Javier Galán, muchas gracias para tu trabajo valioso en el laboratorio y tu presencia 
amable y impasible. Yo quiero repetir mía gratitud para la hospitalidad de Elena Crespo y 
Javier durante un week-end muy agradable en Nijmegen con Johannes. 
Grégory Sale et Claire Patel, votre passage dans le groupe reste inoubliable. Claire, merci 
beaucoup aussi pour tes présentations de PowerPoint très créatives, au nom de tout le 
groupe LT!!!!!!! 
In dit verband wil ik nog Sybolt Harkema en Paul te Riele bedanken voor de 
röntgendiffractometrie die jullie samen met haar hebben willen doen. 
I wish every one of you good luck and good health!  
 
From outside the LT division I would like to mention Aneta & Lukasz, Isabel, Ana and 
Andreea. I enjoy a lot to have met you and to have talked with you on several occasions! 
 
Ik wil graag mijn paranimfen Johannes en Bart bedanken.  
Bart, alle steun in serieuze en vrolijke momenten zijn voor mij van grote waarde geweest. 
Als je vastzit in het schrijven van jouw proefschrift, denk eraan: in Amersfoort heb je die 
lange wandeling ook tot aan de streep gehaald. Ik zal mijn backhand weer eens oefenen 
voor ons volgende spelletje poolbiljart! Heel veel geluk met alle grote veranderingen. 
 
Speciaal wil ik mijn waardering uitspreken voor mijn ouders en naaste familie. Met hun 
onvoorwaardelijke, niet-aflatende steun en tomeloze belangstelling kun je je niet rijker 
wensen. 
Séverine, nous n’avons que fait connaissance avec nous durant les derniers phases de ma 
promotion, mais je veux te remercier très fort pour soulager et ragaillardir cette temps et 
pour ton soutien patient et très affectueux. C’est de grand valeur pour moi. 
 
Ik wens iedereen geluk toe. 

Martin 



STELLINGEN 
 

bij het proefschrift 
 

Capacitive MEMS-based sensors: 
Thermo-mechanical stability and charge trapping 

 
1) Thermo-mechanische stabiliteit is een noodzakelijke voorwaarde voor het 
bestuderen van de effecten van parasitaire ladingen binnen een breed, cryogeen 
temperatuurbereik. 
 
2) Ingevangen ladingen in natuurlijk aluminiumoxide vertonen een differentiatie in 
beweeglijkheid. De beweeglijkheid neemt altijd af bij lage temperaturen. 
 
3) In capacitieve MEMS sensoren kunnen zelfs ultradunne diëlectrische lagen 
zodanig parasitaire lading herbergen dat de werking van de sensoren meetbaar en 
intolerabel verstoord. 
 
4) Wanneer in artikelen de tip-samplecapaciteit wordt berekend, wordt het spiegelen 
van de lading vaak slechts éénmaal uitgevoerd. Toch dient herhaaldelijk te worden 
worden gespiegeld, teneinde een aanzienlijke onderschatting van de capaciteit te 
vermijden. Dit geldt in toenemende mate voor de kracht en de krachtgradiënt. 
 
5) Een locale, parasitaire lading in een ultradun diëlectricum op een metallisch 
substraat vormt in feite een dipool met zijn spiegelbeeld. Om deze reden kunnen 
grote AFM-tips grootte en positie van de lading vrijwel niet oplossen. 
 
6a) Virtuele ladingen, de basis van Hoofdstuk 5, bestaan niet, maar er wordt mee 
gerekend alsof ze wel bestaan. Virtuele ladingen zijn dus leugens. 
6b) Hoe herhaaldelijker wordt gelogen, des te dichter de waarheid wordt benaderd. 
 
7) De meest constante factor in een promotie-onderzoek is onwetendheid. De meest 
gevaarlijke factor is onwetendheid dienaangaande. 
 
8) Het stellen van betrekkingen helpt de wetenschap vooruit; dit in tegenstelling tot 
het stellig betrekken van stellingen, aangezien stellingen slechts betrekkelijk zijn. 
 
9) Een tegenstelling tussen schaken en wetenschap is de wenselijkheid van een 
“bord voor de kop”. 
 
11) De noodzakelijkheid van het onderwerpen van stellingen aan de censuur van de 
promotor is enerzijds beperkend voor de artistieke expressie, anderzijds een 
stimulans voor het creatieve proces. 

Martin van Essen 
Enschede 14 januari 2009 


